首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The dehydrogenation of ammonia borane (BH3NH3) catalyzed by Pd supported on an MgO(100) surface was investigated using the DFT/UB3LYP method and an embedded cluster model. We found that BH3NH3 molecules can be initially adsorbed on 2-Pd atom clusters on the MgO surface (Pd2/MgO) in two different configurations, and on 4-Pd atom clusters (Pd4/MgO) in one configuration. One of the two BH3NH3–Pd2/MgO configurations can dehydrogenate in a concerted pathway with a forward free energy barrier of 16.5 kcal/mol, and the other in a stepwise mechanism with forward barriers of 11.1 and 9.4 kcal/mol, respectively. However, only a stepwise dehydrogenation pathway was found for the single BH3NH3–Pd4/MgO configuration, with a rate-controlling barrier of 12.6 kcal/mol. These results suggest that the BH3NH3 dehydrogenation mechanism and reaction barrier height can change with the size of the Pd clusters on the MgO(100) surface.  相似文献   

2.
In the study, a novel approach of Cu, Co tuned photocatalyst β-SiC catalyze hydrolysis of ammonia borane was proposed as a means to boost H2 evolution. Electronic properties including band structure and DOS of β-SiC and CuCo/β-SiC are calculated. In addition, the hydrolysis mechanism of AB and photocatalytic boosting mechanism of AB hydrolysis on the catalyst CuCo/β-SiC are discussed. The systematic investigation showed that the transition metal atom (Cu, Co) can tune the electronic properties of the β-SiC, and reduce the band gap of semiconductor catalyst β-SiC from the value of 2.739eV–0.535eV. Which makes the β-SiC response to the wider UV–Vis spectrum, and transition metal atom (Cu, Co) tuned β-SiC can help to boost the photocatalytic quantum efficiency of photocatalytic AB hydrolysis reaction. In the process of CuCo/β-SiC catalyzed AB hydrolysis, the reaction path can be described in three key steps: At first, CuCo/β-SiC bond to B of AB, induce the BH bond activation, then H3B- attacked by a H2O molecule, which contributes to the concerted dissociation of BN bond. Finally, via BH3 hydrolysis and produce the borate ion accompanied by the H2 produce. In the reaction of AB hydrolysis, the reaction barrier step is the step of H2O molecule attack BH3, and its energy barrier is 31.44 kcal/mol. In addition, the synergistic hydrolyze and photolyze AB to H2 evolution mechanism was first proposed due to AB can be photocatalyzed by semiconductor photocatalyst β-SiC and conventional catalyzed by the metal catalyst.  相似文献   

3.
A new hydrogen storage system NaZn(BH4)3?2NH3-nNH3BH3 (n = 1–5) was synthesized via a simple ball milling of NaZn(BH4)3?2NH3 and NH3BH3 (AB) with a molar ratio from 1 to 5. Dehydrogenation results revealed that NaZn(BH4)3?2NH3-nAB (n = 1–5) showed a mutual dehydrogenation improvement in terms of significant decrease in the dehydrogenation temperature and preferable suppression of the simultaneous evolution of by-products (i.e. NH3, B2H6 and borazine) compared to the unitary compounds (NaZn(BH4)3?2NH3 and AB). Specially, the NaZn(BH4)3?2NH3-4AB sample is shown to reach the maximum hydrogen purity (99.1 mol %) and favorable dehydrogenation properties rapidly releasing 11.6 wt. % of hydrogen with a peak maximum temperature of 85 °C upon heating to 250 °C. Isothermal dehydrogenation results revealed that 9.6 wt. % hydrogen was liberated from NaZn(BH4)3?2NH3-4AB within 80 min at 90 °C. High-resolution in-situ XRD and Fourier transform infrared (FT-IR) measurements indicated that the significant improvements on the dehydrogenation properties in NaZn(BH4)3?2NH3-4AB can be attributed to the interaction between the NH3 group from NaZn(BH4)3?2NH3 and AB in the mixture, resulting a more activated Hδ+···−δH combination. The research on the reversibility of the spent fuels of NaZn(BH4)3?2NH3-4AB showed that regeneration could be partly achieved by reacting them with hydrazine in liquid ammonia. These aforementioned favorable dehydrogenation properties demonstrate the potential of the combined systems to be used as solid hydrogen storage material.  相似文献   

4.
Bimetallic-based RuCo and RuCu catalysts, supported on γ-Al2O3 (1.5 wt% Ru as theoretical value), were synthesized by polyol method. Ru, Co, and Cu acetylacetonates were used as precursors and ethylene glycol as reducing agent. The as-synthesized catalysts were characterized by SEM, TEM, XRD and XPS, and tested in ammonia-borane (NH3BH3) hydrolytic dehydrogenation at variable amount of catalyst (10-30 wt%), concentration of NH3BH3 (1.0-0.65 M), and temperatures (50-65 °C). The reactions were monitored by volumetric (inverted burette) and spectroscopic methods (11B and 11B{1H} NMR). It was found that the best bimetallic catalysts are those having a molar ratio Ru:Co and Ru:Cu of 1:1 such as RuCo > RuCu ∼ Ru. They, i.e. RuCo and RuCu, consist of nanosized spherical particles of Ru0Co(OH)2 and Ru0Cu0, respectively. Kinetic investigation highlights similar rate laws with activation energies of 47 kJ mol−1 and 52 kJ mol−1, respectively, and, for both, reaction orders of 1 versus both the NH3BH3 and the catalytic free sites concentrations. 11B and 11B{1H} NMR investigation confirmed (i) a more effective NH3BH3 hydrolytic dehydrogenation in the presence of RuCo catalyst even though a loss of activity after the first run was observed for both catalysts, and (ii) a rapid NH3BH3 hydrolysis with initial formation of B(OH)4, which besides favors equilibriums of formation of polyborates. These results are reported and the reaction mechanism discussed herein.  相似文献   

5.
Herein, a report on non-noble metal (Ni, Co, Cu, and their combination) nanoparticles (NPs) supported on TiO2 spheres as catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is provided. The TiO2 spheres were prepared through a template method by using polystyrene (PS). The metallic nanoparticles were synthesized by a redox replacement reaction. The structure, morphology, and chemical composition of the obtained samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray spectroscopy (EDX), and X-ray Photoelectron Spectroscopy (XPS). The characterization results showed that the metallic nanoparticles were well dispersed on the TiO2 supports. The catalytic activity toward the hydrolysis of AB was found to correlate well with the amount of metallic elements in catalysts while for the multicomponent phases, a synergistic effect was noticed. Theoretical calculations revealed that Ni, Co, and Cu atoms significantly influenced the electronic behavior of TiO2 and thereby, the catalytic properties of the materials.  相似文献   

6.
A combined strategy via mixing Mg(BH4)2·6NH3 with ammonia borane (AB) is employed to improve the dehydrogenation properties of Mg(BH4)2·6NH3. The combined system shows a mutual dehydrogenation improvement in terms of dehydrogenation temperature and hydrogen purity compared to the individual components. A further improved hydrogen liberation from the Mg(BH4)2·6NH3–6AB is achieved with the assistance of ZnCl2, which plays a crucial role in stabilizing the NH3 groups and promoting the recombination of NHδ+?HBδ−. Specifically, the Mg(BH4)2·6NH3–6AB/ZnCl2 (with a mole ratio of 1:0.5) composite is shown to release over 7 wt.% high-pure hydrogen (>99 mol%) at 95 °C within 10 min, thereby making the combined system a promising candidate for solid hydrogen storage.  相似文献   

7.
In this paper, CuO hollow microspheres with different shell thickness and porosity have been synthesized using carbonaceous saccharide microspheres as templates according to a modified literature method. These CuO hollow microspheres were characterized and their catalytic properties in the hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) were examined. A kinetic study indicated that a maximum hydrogen generation rate of 294 mL H2 min?1 (g catalyst)?1 can be achieved at 45 ± 0.2 °C in the present system, which is comparable with that for other reported Cu based catalysts.  相似文献   

8.
Electrospun Ni and Cu metal oxide catalysts are successfully synthesized through electrospinning and conventional sol-gel methods to show advantages of electrospinning on catalytic performance in ammonia borane (NH3BH3) methanolysis for hydrogen production. An experimental assessment is presented by the characterization of interior and exterior properties of all catalysts and their catalytic activity towards NH3BH3 methanolysis. The systematic studies are performed in order to figure out of kinetic interpretation. Catalytic NH3BH3 methanolysis reactions are carried out at different catalyst amounts (5–15 mg), initial NH3BH3 concentrations (0.36–6.0 M) and temperatures (20–50 °C). Thanks to the higher pore volume/SBET ratio, fiber type nanostructured Cu oxide catalyst exhibits the highest catalytic activity compared with sol-gel prepared ones. The results of kinetic studies show that the fiber type Cu oxide catalyst catalyzed methanolysis of NH3BH3 and follows the first order reaction kinetic model with 35 kJ mol−1 activation energy value.  相似文献   

9.
The hydrolytic dehydrogenation of ammonia borane (NH3-BH3, AB for short) in the presence of catalysts has been identified to be a safe and efficient way for hydrogen release. Understanding the dehydrogenation mechanism of AB is helpful and important to design efficient catalysts. So far, although the effects of various factors on dehydrogenation of AB have been studied, such as the noble metal particle size effect, crystal-phase effect and the support crystal plane effect, the effect of support composition on dehydrogenation of AB has rarely been reported yet. In this study, we choose composition-adjustable layered double hydroxide (MgAl-LDHs) as support for Ru nanoparticles, and use the as-prepared catalysts for comparing their catalytic activity towards the dehydrogenation of AB. The catalytic results demonstrate the catalytic activity of Ru/MgAl-LDHs is related to MgAl-LDHs composition, exhibiting a support-composition effect in the hydrolytic dehydrogenation of AB. Combining various characterizations, the different composition of MgAl-LDHs has an effect on the interaction between Ru nanoparticles and MgAl-LDHs, which directly affects the catalytic activity for the hydrolysis of AB. This study provides new important fundamental knowledge on the mechanism of AB hydrolysis over practical supported metal catalysts which can be used for a better catalyst design.  相似文献   

10.
We report the preparation of Ni3B and carbon-supported Ni3B (denoted as Ni3B/C) nanoparticles, and their catalytic performance for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). Ni3B and Ni3B/C were prepared via a chemical reduction and crystallization in tetraethylene glycol solution. The obtained Ni3B catalysts are in well-defined crystalline state and Ni3B/C catalysts have a high dispersion in the carbon. The hydrogen generation measurement shows that the carbon-supported Ni3B presents enhanced catalyst activity during hydrolytic dehydrogenation of AB. Among the as-prepared Ni3B/C catalysts, Ni3B/C with 34.25 wt% Ni3B loading displays the best catalytic activity, delivering a high hydrogen release rate of 1168 mL min−1 g−1 and the lower activation energy of 46.27 kJ mol−1. The kinetic results show that the hydrolysis is a first-order reaction in catalyst concentration, while it is a zero-order in AB concentration. Furthermore, the Ni3B/C is a recyclable catalyst under mild reaction conditions, indicating that the carbon-supported Ni3B is a promising catalyst for AB hydrolytic dehydrogenation.  相似文献   

11.
Dehydrogenation of Ammonia Borane (NH3BH3, AB) catalyzed by transition metal heterogeneous catalysts was carried out in non-aqueous solution at temperatures below the standard polymer electrolyte membrane (PEM) fuel cell operating conditions. The introduction of a catalytic amount (∼2 mol%) of platinum to a solution of AB in 2-methoxyethyl ether (0.02–0.33 M) resulted in a rapid evolution of H2 gas at room temperature. At 70 °C, the rate of platinum catalyzed hydrogen release from AB was the dehydrogenation rate which was 0.04 g s−1 H2 kW−1.  相似文献   

12.
The hydrolysis of ammonia borane (NH3BH3) is recognized as an efficient way of hydrogen generation if it can be effectively catalyzed. In this work, a series of cobalt–molybdenum–boron (Co–Mo–B) nanoparticles (NPs) on copper (Cu) foil are introduced as catalysts for NH3BH3 hydrolysis by electroless deposition method. The influence of the depositing pH value on the catalytic property is investigated by adjusting the pH value ranged from 10.5 to 12.0. By optimizing the value to 11, the ultrafine Co–Mo–B NPs with the grain size around 4.3 nm show the best catalytic property for NH3BH3 hydrolysis. The hydrogen generation rate reaches 5818.0 mL·min−1·g−1 when the hydrolysis temperature is 298 K. The thermodynamic tests show that the lower activation energy (Ea) is estimated to be 59.3 kJ·mol−1. It can be found that the catalytic property in this work overtakes that of partial non-precious metal NPs, and is even better than some precious metal NPs previously reported. The hydrolysis reaction of NH3BH3 catalyzed by ultrafine Co–Mo–B NPs is a non-spontaneous process. In addition, the cycling ability of the ultrafine Co–Mo–B NPs is also studied and the results demonstrate that the catalyst is a recyclable one toward the hydrolysis of NH3BH3 under mild reaction conditions.  相似文献   

13.
《Journal of power sources》2006,163(1):364-370
We have studied catalytic performance of supported non-noble metals for hydrogen generation from aqueous NH3BH3 at room temperature. Among the tested non-noble metals, supported Co, Ni and Cu are the most catalytically active, with which hydrogen is released with an almost stoichiometric amount from aqueous NH3BH3, whereas supported Fe is catalytically inactive for this reaction. Support effects on the catalytic activity have been investigated by testing the hydrogen generation reaction in the presence of Co supported on γ-Al2O3, SiO2 and C and it is found that the Co/C catalyst has higher activity. Activation energy for hydrogen generation from aqueous NH3BH3 in the presence of Co/γ-Al2O3 was measured to be 62 kJ mol−1; this may correspond to the step of BN bond breaking. Particle size, surface morphology and surface area of the supported metal catalysts were examined by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) and BET experiments. It is found that with decreasing the particle size the activity of the supported catalyst is increased. The low-cost and high-performance supported non-noble metal catalysts may have high potential to find its application to the hydrogen generation for portable fuel cells.  相似文献   

14.
Alloy catalyst has been widely studied and used for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) with excellent catalytic performance due to the synergistic effect of bimetal. Herein, a series of Rh1-xCox/Ni@Ni–N–C catalysts were prepared by an impregnation reduction method. The optimized Rh0.75Co0.25/Ni@Ni–N–C catalyst exhibited good catalytic performance with turnover frequency of 223.08 molH2 molcat?1 min?1 at 303 K, but decreased the catalytic performance compared with Rh/Ni@Ni–N–C. According to the XPS and Raman analysis, the RhCo alloy nanoparticles could be loaded at the defect position of Ni@Ni–N–C, and the Co nanoparticles occupied the intercalation between Rh and the defective site of the carrier, which could weaken the catalytic activity of AB hydrolysis. Based on the above research, we proposed the catalytic mechanism of the activation of the RhCo–H species. This work provides a new strategy for designing alloy-supported nano-catalysts.  相似文献   

15.
Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as LiH–AB (6 equiv. H), AB–Mg(NH2)2 (No H2 release) and LiH–Mg(NH2)2 (4 equiv. H), respectively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3. LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and MgNH as well as hydrogen.  相似文献   

16.
Epoxy-activated acrylic particulate polymer, namely Eupergit CM, supported Co–Fe–Ru–B catalyst (EP/Co–Fe–Ru–B) for the first time was used to produce H2 from hydrolysis of NH3BH3. The EP/Co–Fe–Ru–B showed very effective performance in the production of H2 from the hydrolysis of NH3BH3. Various techniques such as XRD, SEM-EDS, ICP-OES, and TEM have been used to characterize these catalysts. The parameters on the hydrolysis reaction of NH3BH3 such as the effect of metal amount, the effect of Ru percentage, the effect of NH3BH3 concentration, the effect of NaOH concentration, the amount of catalyst, temperature, and catalyst durability were investigated in detail. Eupergit CM based polymer support and Ru particles have been found to be highly effective in H2 production reactions. The hydrogen production rate (HGR) of the EP/Co–Fe–Ru–B catalyst was found to be 36,978 mL/min/gcat, which was quite good compared to the values reported in the literature. In addition, the activation energy (Ea) of the polymer-supported Co–Fe–Ru–B catalyst was determined as 24.91 kJ/mol.  相似文献   

17.
In the present study, we employed a multi-component combination strategy to constitute an AB/LiNH2/LiBH4 composite system. Our study found that mechanically milling the AB/LiNH2/LiBH4 mixture in a 1:1:1 molar ratio resulted in the formation of LiNH2BH3 (LiAB) and new crystalline phase(s). A spectral study of the post-milled and the relevant samples suggests that the new phase(s) is likely ammoniate(s) with a formula of Li2−x(NH3)(NH2BH3)1−x(BH4) (0 < x < 1). The decomposition behaviors of the Li2−x(NH3)(NH2BH3)1−x(BH4)/xLiAB composite were examined using thermal analysis and volumetric method in a wide temperature range. It was found that the composite exhibited advantageous dehydrogenation properties over LiAB and LiAB·NH3 at moderate temperatures. For example, it can release ∼7.1 wt% H2 of purity at temperature as low as 60 °C, with both the dehydrogenation rate and extent far exceeding that of LiAB and LiAB·NH3. A selectively deuterated composite sample has been prepared and examined to gain insight into the dehydrogenation mechanism of the Li2−x(NH3)(NH2BH3)1−x(BH4)/xLiAB composite. It was found that the LiBH4 component does not participate in the dehydrogenation reaction at moderate temperatures, but plays a key role in strengthening the coordination of NH3. This is believed to be a major mechanistic reason for the favorable dehydrogenation property of the composite at moderate temperatures.  相似文献   

18.
Ammonia borane (NH3BH3, AB) has received extensive attention as a potential hydrogen storage medium, however hydrogen release mechanisms from AB are not well understood. AB follows different reaction routes if the dehydrogenation occurs in solvent or solid state, but a comparative study for AB dehydrogenation in these two states is not available. In this work, a detailed study of AB dehydrogenation mechanism in diglyme and solid state is presented, and a comprehensive reaction network for both cases is proposed. The experimental and DFT results suggest that two main reaction pathways occur; one involves cyclization of monomers which results in faster dehydrogenation at lower temperature, while the other involves propagation to acyclic intermediates which requires higher temperature to carry out the cyclization step. AB dehydrogenation in solid state was experimentally found to be initiated by B–N bond cleavage and not by direct dehydrogenation, which agrees with high level CCSD(T)/MP2 calculations reported previously. It was found that diglyme plays a significant role in hindering B–N bond cleavage of AB which facilitates the cyclization pathway. In solid state, experiments including labeled AB (ND3BH3) mapped out the source of hydrogen (from hydridic or protonic ends), and a clear difference in the degree of dehydrogenation from the two ends is demonstrated.  相似文献   

19.
In the present work, we studied the effect of metal chlorides, MCl2, on the thermal decomposition of ammonia borane NH3BH3 (AB). Some metals from row n = 4 of the periodic table were chosen and used as MCl2: namely, FeCl2, CoCl2, NiCl2, CuCl2, and ZnCl2. In addition, three metals from column VIII of the periodic table were considered: NiCl2, PdCl2 and PtCl2. The AB decomposition was followed by TGA and DSC; the decomposition gases analyzed by μGC/MSD coupling, and the solid by-products identified by XRD, IR and XPS. We observed that the presence of CuCl2 in AB is beneficial, making the decomposition occur in much milder conditions than for pristine AB; for example, the dehydrogenation of CuCl2-doped AB started at 25 °C, with the sample losing about 14 wt% at 85 °C. However, MCl2 does not hinder the evolution of the undesired borazine; it only contributes to a decrease in its content compared to pristine AB. To rationalize the better performance of CuCl2, we propose that Cu offers an optimal doping activity with intermediate binding energies for the intermediates: i.e. with H not too strongly bonded but optimally bonded to the N of AB. The germ Cu?NH2–BH2, then formed, acts as a Lewis acid through B and has an optimized reactivity towards a new AB molecule (head-to-tail dehydrocoupling). This is discussed herein.  相似文献   

20.
The stoichiometric reactions of ammonia borane (NH3BH3, AB) and selected alkali or alkaline-earth metal hydrides produce metal amidoboranes, which possess dehydrogenation property advantages over their parent AB. However, the losses of hydrogen capacity and chemical energy in the preparation process make metal amidoboranes less energy-effective for hydrogen storage application. In the present study, by combining the M+–Mg2+ double cations remarkably lowers the reactivity of the alkali metal hydrides toward AB. As a result, the starting Mg-based ternary hydrides MMgH3 (M = Na, K, Rb) and AB phases are largely stable in the mechanical milling process, but transform to the corresponding mixed-cation amidoboranes in the subsequent heating process. Importantly, when the post-milled 3AB/MMgH3 mixtures are isothermally heated at above 60 °C using water bath, the formation and decomposition processes of the mixed-cation amidoboranes can be favorably combined, giving rise to rapid and efficient dehydrogenation performances at the mild temperatures (60–80 °C). The results acquired may provide a generalized reactions coupling strategy for designing and synthesis other potentially efficient hydrogen storage system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号