首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE), DC electrical conductivity, AC electrical conductivity and complex permittivity of nanostructured polymeric materials filled with three different carbon nanofillers of different structures and intrinsic electrical properties were investigated. The nanofillers were multiwall carbon nanotubes (MWCNT), carbon nanofibers (CNF) and high structure carbon black (HS-CB) nanoparticles and the polymer was acrylonitrile-butadiene-styrene (ABS). In addition, the EMI SE mechanisms and the relation between the AC electrical conductivity in the X-band frequency range and the DC electrical conductivity were studied. The nanocomposites were fabricated by solution mixing and characterized by uniform dispersion of the nanofillers within the polymer matrix. It was found that, at the same nanofiller loading, the EMI SE, permittivity and electrical conductivity of the nanocomposites decreased in the following order: MWCNT > CNF > CB. MWCNT based nanocomposites exhibited the lowest electrical percolation threshold and the highest EMI SE owning to the higher aspect ratio and electrical conductivity of MWCNT compared to CNF and HS-CB. The AC conductivity in the X-band frequency range was found to be independent of frequency.  相似文献   

2.
Multiwalled carbon nanotubes (MWCNTs) were synthesized using chemical vapor deposition and poly(trimethylene terephthalate) (PTT)/MWCNT composites with varying amounts of MWCNTs were prepared by melt compounding using DSM micro‐compounder. Morphological characterization by SEM and TEM showed uniform dispersion of MWCNTs in PTT matrix upto 2% (w/w) MWCNT loading. Incorporation of MWCNTs showed no effect on percent crystallinity but affected the crystallite dimensions and increased the crystallization temperature. Dynamic mechanical characterization of composites showed an increase in storage modulus of PTT upon incorporation of MWCNTs above glass transition temperature. The electrical conductivity of PTT/MWCNT composites increased upon incorporation of MWCNTs and percolation threshold concentration was obtained at a loading of MWCNTs in the range of 1–1.5% (w/w). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
The use of multi‐walled carbon nanotubes (MWCNT) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA), and polystyrene (PS) has been studied. MWCNT were synthesized by chemical vapor deposition (CVD) technique using ferrocene‐toluene mixture. As‐prepared nanotubes were ultrasonically dispersed in toluene and subsequently dispersed in PMMA and PS. Thin polymer composite films were fabricated by solvent casting. The effect of nanotube content on the electrical and mechanical properties of the nanocomposites was investigated. An improvement in electrical conductivity from insulating to conducting with increasing MWCNT content was observed. The carbon nanotube network showed a classical percolating network behavior with a low percolation threshold. Electromagnetic interference (EMI) shielding effectiveness value of about 18 dB was obtained in the frequency range 8.0–12 GHz (X‐band), for a 10 vol% CNT loading. An improved composite fabrication process using casting followed by compression molding and use of functionalized MWCNT resulted in increased composites strength. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
The present investigation aims to develop thermally stable electromagnetic interference shielding materials from polysulfone (PSU) nanocomposites filled with multiwall carbon nanotubes (MWCNT) or carbon nanofibers (CNF). The effect of filler type and their structural features such as aspect ratio (length/diameter) and wall integrity on the different properties of nanocomposites has been investigated. Nanocomposite filled with MWCNT/CNF exhibits higher thermal stability compared with the neat PSU matrix. The onset degradation temperature of PSU at 532°C enhances to 537 and 538°C at 3 wt% MWCNT and 3 wt% CNF loading, respectively. CNFs filled nanocomposite shows higher electromagnetic interference shielding effectiveness (EMISE) compared with MWCNT filled one at the same filler loading. Compared with MWCNT, CNF imparts lower electrical percolation threshold. Nanocomposite filled with MWCNTs possesses percolation threshold at 1.5 wt%, whereas nanocomposite filled with CNFs possesses the same at 0.9 wt%. The EMISE of 20–45 dB are obtained from only 1 mm thick CNF filled nanocomposites from the filler loading 3 to 10 wt%. This value of EMISE above 40 dB suggests that the prepared nanocomposite can be used as an effective lightweight EMI shielding material for high frequency (8.2–12.4 GHz) applications, where high thermal stability is required. POLYM. COMPOS. 36:566–575, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
To shield undesirable electromagnetic waves caused by electronic devices and simultaneously resolve the flame safety of the electronic components, an electromagnetic interference (EMI) shielding material with excellent flame‐retardant properties is urgently needed. The synergistic effect of the intumescent flame retardant (IFR) and multiwalled carbon nanotubes (MWCNTs) for polystyrene (PS) nanocomposites prepared by melt blending was investigated. The results show that addition of certain amounts of IFRs facilitated the dispersion of MWCNTs in the PS matrix, and the percolation threshold of the MWCNTs in the PS matrix also decreased from 1.67 ± 0.05 to 1.29 ± 0.04 wt %. Moreover, the EMI shielding efficiencies (SEs) of the PS–MWCNT–IFR composites were consistently higher than those of the PS–MWCNT composites without the addition of the IFRs at the same MWCNT content; this indicated that the synergistic effect of the MWCNTs and IFRs effectively improved the EMI SE of the PS–MWCNT–IFR composites. Furthermore, the limiting oxygen index (LOI) testing results show that the LOI values of the PS–MWCNT composites were consistently higher than 27%; this indicated that the PS–MWCNT composites effectively met the needs of flame safety; this indicated that the PS–MWCNT–IFR composite is a novel and promising candidate for an ideal EMI shielding material with excellent flame‐retardant properties for today's electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45088.  相似文献   

7.
This study focuses on the electrical properties of polycarbonate (PC)/poly(ε‐caprolactone) (PCL)‐multiwall carbon nanotube (MWCNT) nanocomposites. MWCNTs were incorporated into thermoplastic PC matrix by simple melt blending using biodegradable PCL based concentrates with MWCNT loadings (3.5 wt%). Because of the lower interfacial energy between MWCNT and PCL, the nanotubes remain in their excellent dispersion state into matrix polymer. Thus, electrical percolation in PC/PCL‐MWCNT nanocomposites was obtained at lower MWCNT loading rather than direct incorporation of MWCNT into PC matrix. AC and DC electrical conductivity of miscible PC/PCL‐MWCNT nanocomposites were studied in a broad frequency range, 101?106 Hz and resulted in low percolation threshold (pc) of 0.14 wt%, and the critical exponent (t) of 2.09 from the scaling law equation. The plot of logσDC versus p?1/3 showed linear variation and indicated the existence of tunneling conduction among MWCNTs. At low MWCNT loading, the influence of large polymeric gaps between conducting clusters is the reason for the frequency dependent electrical conductivity. Transmission electron microscopy and field emission scanning electron microscopy showed that MWCNTs were homogeneously dispersed and developed a continuous interconnected network path throughout the matrix phase and miscibility behavior of the polymer blend. POLYM. ENG. SCI., 54:646–659, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

9.
To develop a rubber composite with excellent electrical properties, a sort of synthetic rubber, acrylonitrile butadiene rubber (NBR) with CN dipoles as matrix, multi‐walled carbon nanotubes (MWCNTs) as filler, was synthesized. NBR composites reinforced with 0.5, 1.5, 3, 10, and 20 phr MWCNT contents were fabricated by latex technology. The electrical conductivity, dielectric characteristics, and electromagnetic interference (EMI) shielding effectiveness at room temperature of NBR/MWCNT composites were investigated. MWCNTs were found well dispersed into NBR matrix even for 20 phr content by FESEM observation. The electrical conductivity increased with an increment of MWCNT content. The dielectric constant was over 104 at 103 Hz frequency for 10 and 20 phr MWCNTs‐reinforced NBR composites. It was attributed to the increased electrons and interface polarization. The improved conductivity and dielectric permittivity resulted in an enhanced EMI shielding effectiveness. The EMI shielding effectiveness reached 26 dB at 16.7 GHz frequency for NBR/20 phr MWCNT composite with 1.0 mm thickness. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Electrically conductive composite nanofibers of polyvinylpyrrolidone (PVP) filled with multi-walled carbon nanotubes (MWCNTs) were prepared by electrospinning process. The complex permittivity and electromagnetic interference shielding effectiveness (EMI SE) of all composite nanofibers were measured in the X band frequency range 8.2–12.4 GHz. The electrical conductivity, real and imaginary part of permittivity, and EMI shielding behaviors of the composite nanofibers were reported as function of MWCNTs concentration. Electrical conductivity of MWCNTs/PVP composite nanofiber followed power law model of percolation theory having a percolation threshold ?c = 0.72 vol% (~1 wt.%) and exponent t = 1.71. The total EMI SE of MWCNTs/PVP composite nanofibers increased up to 42 dB mainly base on the absorption mechanism. The EMI SE measured from experiments was also compared with the approximate value calculated from theoretical model. The obtained theory results confirmed that the selected model presented acceptable performance for evaluating the involved parameters and prediction of the EMI SE of composite nanofibers. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the frequency, thickness, permittivity, and conductivity.  相似文献   

11.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Multiwalled carbon nanotube (MWCNT) filled poly(ether sulfone) (PES) and poly(ether imide) (PEI) composites were prepared with different MWCNT weight fractions (0.5–5wt%) by a solution mixing technique. Their electrical conductivities, electromagnetic interference (EMI), shielding effectiveness (SE), return loss (RL), and absorption loss (AL) were investigated. Morphologies of the fracture surfaces of nanocomposites studied by scanning electron and transmission electron microscopy showed relatively good MWCNT dispersion and distribution. The electrical conductivity of compression molded samples measured at room temperature indicated that the electrical percolation network was achieved already at 0.5% loading. The measurements of shielding effectiveness (SE) carried out in the frequency range of 8 to 12 GHz (X‐band range) showed that SE increases with measurement frequency and with filler loading, whereby no significant differences could be observed between PES and PEI as matrices. The nanocomposites based on both matrices with 5 wt% loading of MWCNT exhibited shielding levels at 8 GHz between 42 and 45 dB in comparison with the pure polymers which showed value in the range of 1 to 2 dB. RL and AL showed significantly lower values for the composites as compared to unfilled polymers, but no systematic trends were observed on frequency. POLYM. ENG. SCI., 54:2560–2570, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
To study the effect of carbon nanotube aspect ratio (AR) on the frequency response of the electrical properties, the alternating current (AC) electrical conductivity and dielectric permittivity of different AR multi-wall carbon nanotubes (MWCNTs)/thermoplastic elastomer (TPE) composites were studied in the AC frequency range of 100 Hz to 10  MHz. Qualitatively, the effect of frequency on the electrical properties of the composites was the same for all AR MWCNTs and shared many typical features of electrically percolative composites. Quantitatively, the frequency responses of electrical properties were found to be independent of nominal AR, concentration, percolation threshold, and the diameter of the MWCNT. Instead, frequency response of electrical properties was dependent on the MWCNT length and initial electrical conductivity of the composites. With the same initial conductivity of the MWNT composites, frequency-conductivity sensitivity varied inversely with the nominal length of the MWCNTs. Composites with MWCNTs of the same nominal length and similar electrical conductivity values, regardless of whether the MWCNT concentration was below or above the percolation threshold, exhibited quantitatively similar frequency-conductivity sensitivity. The frequency-dielectric sensitivity at the percolation threshold was a reflection of frequency-conductivity sensitivity and was also found to be dependent on the initial conductivity of the composites.  相似文献   

14.
The electrical and electromagnetic interference shielding effectiveness (EMI SE) properties of multi-walled carbon nanotubes/polycarbonate (MWCNT/PC) composites are investigated. The composites were prepared by diluting masterbatch (15 wt.% MWCNT) using a Haake mixer and then injection-molded into a dog-bone mold. Various MWCNT alignments were created by changing operating conditions. Electrical resistivity measurements were carried out at three different areas at both parallel and perpendicular to the flow direction. The results showed higher resistivity and percolation threshold at higher alignments in both parallel and perpendicular to the flow direction. By applying Ohm’s law it was seen that after percolation, the field emission mechanisms are more important at higher orientations. Higher MWCNT alignments were observed in areas with higher resistivities, and this was verified using SEM, TEM and Raman spectroscopy techniques. Additionally, EMI SE measurements were done on compression-molded samples at different concentrations and thicknesses. The results showed that both EMI SE by reflection and absorption increased with increase in MWCNT loading and shielding material thickness.  相似文献   

15.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Multiwall carbon nanotube (MWCNT)/cellulose composite fibers were processed from solutions in ethyl methylimidazolium acetate (EMIAc). Rheological percolation in MWCNT/Cellulose/EMIAc solution was observed above 0.01 mass fraction of MWCNT, while electrical percolation in oriented fibers was observed above 0.05 mass fraction of MWCNTs with respect to the weight of the cellulose. Cellulose orientation and crystal size were significantly higher in the composite than in the control cellulose fiber. In addition, in the composite fiber, carbon nanotube orientation was higher than cellulose orientation. At 0.05 mass fraction MWCNT, fiber tensile strength increased by about 25%, strain to failure increased by 100%, and modulus essentially remained unchanged. The composite fibers showed lower thermal shrinkage than the control cellulose fiber. The axial electrical conductivity at 0.1 mass fraction MWCNTs in these oriented fibers was more than 3000 S/m.  相似文献   

18.
Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength, thermogravimetry, current-voltage measurements, shielding against electromagnetic interference, and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to 5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22 × 10−6 S/cm and 6.61 × 10−5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of –10.5 dB at 9 GHz and a value around –8.2 dB between 11 and 12 GHz. This was possibly due to the higher electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites, regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal the possibility for tailoring the properties of insulating materials for application in electrical and electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen the application range.  相似文献   

19.
We demonstrate a method that involves melt blending of polycarbonate (PC) and melt‐blended acrylonitrile butadiene styrene (ABS) with multiwall carbon nanotubes (MWCNTs) to prepare electrically conducting PC/MWCNT nanocomposites at significantly low MWCNT loading. The partial solubility of ABS in PC led to a selective dispersion of the MWCNTs in the ABS phase after melt‐blending PC and ABS. Thus, a sudden rise in electrical conductivity (∼108 orders of magnitude) of the nanocomposites was found at 0.328 vol% of MWCNT, which was explained in terms of double percolation phenomena. By optimizing the ratio of PC and the ABS–MWCNT mixture, an electrical conductivity of 5.58 × 10−5 and 7.23 × 10−3 S cm−1 was achieved in the nanocomposites with MWCNT loading as low as 0.458 and 1.188 vol%, respectively. Transmission electron microscopy revealed a good dispersion and distribution of the MWCNTs in the ABS phase, leading to the formation of continuous MWCNT network structure throughout the matrix even at very low MWCNT loading. Storage modulus and thermal stability of the PC were also increased by the presence of a small amount of MWCNTs in the nanocomposites.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by the method of solution mixing/casting. The dispersity of the MWCNTs in the PVDF-TrFE matrix was investigated using transmission electron microscopy (TEM), revealing that MWCNT are well distributed in the PVDF matrix. Both individual and agglomerations of MWCNT’s were evident. The electrical properties were characterized by ac conductivity measurements. The conductivity was found to obey a percolation-like power law with a percolation threshold below 0.30 wt. %. The electrical conductivity of the neat PVDF-TrFE could be enhanced by seven orders of magnitude, with the addition of only 0.3 wt. % MWCNTs, suggesting the formation of a well-conducting network by the MWCNT’s throughout the insulating polymer matrix. The intercluster polarization and anomalous diffusion models were used to explain the dielectric behaviors of the composites near the percolation threshold, and the analyses of ac conductivity and dielectric constant imply that the intercluster polarization is more applicable to our systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号