首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enhance the mechanical strength of poly(ethylene glycol)(PEG) gels and to provide functional groups for surface modification, we prepared interpenetrating (IPN) hydrogels by incorporating poly(2‐hydroxyethyl methacrylate)(PHEMA) inside PEG hydrogels. Formation of IPN hydrogels was confirmed by measuring the weight percent gain of the hydrogels after incorporation of PHEMA, as well as by ATR/FTIR analysis. Synthesis of IPN hydrogels with a high PHEMA content resulted in optically transparent and extensively crosslinked hydrogels with a lower water content and a 6 ~ 8‐fold improvement in mechanical properties than PEG hydrogels. Incorporation of less than 90 wt % PHEMA resulted in opaque hydrogels due to phase separation between water and PHEMA. To overcome the poor cell adhesion properties of the IPN hydrogels, collagen was covalently grafted to the surface of IPN hydrogels via carbamate linkages to hydroxyl groups in PHEMA. Resultant IPN hydrogels were proven to be noncytotoxic and cell adhesion study revealed that collagen immobilization resulted in a significant improvement of cell adhesion and spreading on the IPN hydrogel surfaces. The resultant IPN hydrogels were noncytotoxic, and a cell adhesion study revealed that collagen immobilization improved cell adhesion and spreading on the IPN hydrogel surfaces significantly. These results indicate that PEG/PHEMA IPN hydrogels are highly promising biomaterials that can be used in artificial corneas and a variety of other load‐bearing tissue engineering applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
In this investigation, polyacrylamide (PAAm) as the flexible network is introduced to enhance the mechanical strength of hyaluronic acid–gelatin (HA–Gel) hydrogels by interpenetrating polymer network (IPN). The structure, mechanical property, and rheology property of the IPN hydrogels are investigated. It is found that the compressive strength of the HA–Gel/PAAm IPN hydrogels has increased five times higher than that of HA–Gel hydrogels. Rheological test demonstrates that elastic moduli (G′) and viscous moduli (G″) of HA–Gel/PAAm IPN hydrogels increase 100 times higher than those of HA–Gel hydrogels. Moreover, the HA–Gel hydrogels are fractured under the low compressive stress, whereas HA–Gel/PAAm IPN hydrogels are not broken under the high compressive stress. It is envisioned that the IPN hydrogels will be an effective approach to enhance the mechanical strength and broaden the range of hydrogels' applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44503.  相似文献   

3.
This article describes the synthesis and characterization of interpenetrating polymer networks (IPNs) from hydrophilic and hydrophobic polymers using emulsification technique. Tween 20 (0.001 wt % of gelatin) was employed as emulsifier for the preparation of semi and full IPNs. Gelatin (G), a hydrophilic component was crosslinked by glutaraldehyde (Glu) and divinyl ester (DVE), a hydrophobic component was polymerized/crosslinked using 3 mol % of AIBN as an initiator. Structural characterization was done using FTIR (doublet at 1620 and 1636 cm?1) and NMR (signals in the range of δ = 5–7 ppm), which confirmed the formation of DVE. Several samples were prepared by varying the ratio of gelatin : DVE (w/w) and the Glu concentration. The swelling characteristics (as a function of varying pH maintained using buffers) and degradation behavior (in phosphate buffer saline pH 7.4) of hydrogels was studied to investigate the effect of composition and crosslinker concentration. Percent water uptake decreased from 496 to 181 at pH 7.4 and pH 6.5 in IPNs as the concentration of DVE increased from 0.3 g to 0.7 g per g of gelatin. Semi‐IPNs, where DVE was not polymerized, demonstrated higher swelling at pH 7.4 in contrast to pH 6.5 irrespective of Glu concentration. Gelatin hydrogels degraded within 180 h and IPNs degraded within 290 h whereas DVE did not degrade till the study period of 20 days. The formation of IPN was confirmed by thermal characterization (DSC, TGA) and scanning electron microscopy (SEM). Observation of cross‐sectional microstructure of disrupted honeycomb of Gx into closely packed fiber‐like structure upon interpenetration by SEM clearly suggests the formation of IPN. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Hydrogels are suitable biomaterials for cartilage tissue engineering due to the excellent ability to retain water to provide suitable environment for the tissue, however, the insufficient mechanical properties often prevent their wider applications. The objective of this study was to fabricate biocompatible hydrogels with good mechanical performance, high-water content, and porous microstructure for cartilage regeneration. Photocrosslinked hydrogels are one of the most widely used systems in tissue engineering due to the superior mechanical properties. In this study, block copolymer, poly(ε -caprolactone)-poly(ethylene)-poly(ε -caprolactone) diacrylate (PCL–PEG–PCL; PEC), was prepared by ring-opening polymerization, and PEC hydrogels were made through free radical crosslinking mechanism. Agarose network is chosen as another component of the hydrogels, because of the high-swelling behavior and cartilage-like microstructure, which is helpful for chondrocytes growth. Interpenetrating networks (IPN) were fabricated by diffusing PEC into agarose network followed by photo-crosslinking process. It was noted that incorporating PEC into the agarose network increased the elastic modulus and the compressive failure properties of individual component networks. In addition, high-swelling ratio and uniform porosity microstructures were found in the IPN hydrogels. IPN and PEC showed low cytotoxicity and good biocompatibility in elution test method. The results suggest promising characteristics of IPN hydrogels as a potential biomaterial for cartilage tissue engineering.  相似文献   

5.
Temperature‐ and pH‐responsive semi‐interpenetrating polymer network (semi‐IPN) hydrogels constructed with chitosan and polyacrylonitrile (PAN) were studied. The characterizations of semi‐IPN hydrogels were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). IPN hydrogels exhibited a relatively high swelling ratio, 23.31%–145.20% at room temperature. The swelling ratio of hydrogels depends on pH and temperature. DSC was used to determine the amount of free water in IPN hydrogels. The amount of free water increased with increasing chitosan content in the semi‐IPN hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2011–2015, 2003  相似文献   

6.
In this work, we present the synthesis and characterization of chemically crosslinked polyurethanes (PU) composed of poly(ethylene glycol) (PEG) and poly(caprolactone) diol (PCL‐diol), as hydrophilic and hydrophobic segments respectively, poly(caprolactone) triol (PCL‐triol), to induce hydrolysable crosslinks, and hexamethylene diisocyanate (HDI). The syntheses were performed at 45 °C, resulting in polyurethanes with different PEG/PCL‐diol/PCL‐triol mass fractions. All the PUs are able to crystallize and their thermal properties depend on the global composition. The water uptake capacities of the PU increase as the PEG amount increases. The water into hydrogels is present in different environments, as bounded, bulk and free water. The PU hydrogels are thermo‐responsive, presenting a negative dependence of the water uptake with the temperature for PEG rich networks, which gradually changes to a positive behavior as the amount of poly(caprolactone) (PCL) segments increases. However, the water uptake capacity changes continuously without an abrupt transition. Scanning electron microscopy (SEM) analyses of the hydrogel morphology after lyophilization revealed a porous structure. Mechanical compression tests revealed that the hydrogels present good resilience and low recovery hysteresis when they are subject to cycles of compression–decompression. In addition, the mechanical properties of the hydrogels varies with the composition and crosslinking density, and therefore with the water uptake capacity. The PU properties can be tuned to fit for different applications, such as biomedical applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43573.  相似文献   

7.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Hydrogels of a natural origin have attracted considerable attention in the field of tissue engineering due to their resemblance to ECM, defined degradability and compatibility with biological systems. In this study, we introduced carrageenan into a gelatin network, creating IPN hydrogels through biological methods of enzymatic and ionic crosslinking. Their gelation processes were monitored and confirmed by rheology analysis. The combination of biochemical and physical crosslinking processes enables the formation of biohydrogels with tunable mechanical properties, swelling ratios and degradation behaviors while maintaining the biocompatibilities of natural materials. The mechanical strength increased with an increase in carrageenan content while swelling ratio and degradability decreased correspondingly. In addition, the IPN hydrogels were shown to support adhesion and proliferation of L929 cell line. All the results highlighted the use of biological crosslinked gelatin‐carrageenan IPN hydrogels in the context of tissue engineering. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 10.1002/app.40975.  相似文献   

9.
Poly(2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS)/hyaluronic acid (HA) interpenetrating polymer network (IPN) hydrogels have been prepared by using the sequential‐IPN method. The IPN hydrogels exhibited swelling behavior in solutions at various pHs, in NaCl solutions, and under electrical DC stimulation. The IPN hydrogels were highly swollen in water, but lost much of their water capacity when transferred to solutions having a high ionic strength. The IPN hydrogels showed a significant responsive deswelling in an applied electric field. This behavior indicates the potential application of IPN hydrogels as biomaterials. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1731–1736, 2004  相似文献   

10.
Temperature‐responsive semi‐interpenetrating polymer networks (semi‐IPNs) constructed with chitosan and polyacrylonitrile (PAN) were crosslinked with glutaraldehyde. The semi‐IPN determined the sorption behavior of water at several temperatures and at a relative humidity (RH) of 95% using a dynamic vapor sorption (DVS) system. Water diffusion coefficients of semi‐IPNs were calculated according to the Fickian Law at several temperatures and exhibited a relatively water uptake, 0.1–0.4 at room temperature. The water uptake of hydrogels depended on temperature. The apparent activation energy was dependent of the composition of the semi‐IPN with value of 32.8–34.8 kJmol?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2721–2724, 2003  相似文献   

11.
Interpenetrating polymer network (IPN) hydrogels based on poly(ethylene oxide) and poly(methyl methacrylate) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone and ethylene glycol dimethacrylate as initiators and crosslinkers, respectively. The IPN hydrogels were analyzed for sorption behavior at 25°C and at a relative humidity of 95% using dynamic vapor sorption. The IPN hydrogels exhibited a relatively high equilibrium water content in the range of 13–68%. The state of water in the swollen IPN hydrogels was investigated using differential scanning calorimetry. The free water in the hydrogels increased as the hydrophilic content increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 258–262, 2003  相似文献   

12.
Biodegradable hydrogels have attracted much attention in tissue engineering due to their good biocompatibility and elastomeric behavior. In this work, a series of inorganic–organic polyhedral oligomeric silsequioxanes–poly(ethylene glycol) (POSS–PEG) hybrid hydrogels are prepared by covalently grafting POSS into PEG and further cross‐linked by matrix metalloproteinase (MMP) degradable peptide via Michael‐type addition polymerization. All the POSS–PEG hybrid hydrogels have a porous structure and high hydrophilic ability, and the grafted hydrophobic POSS macromers result in a higher mechanical properties and lower equilibrium swelling ratio. Additionally, the hydrogels can be biodegraded by MMP‐2 solution and the POSS loading level can influence the degradation rate. It is worth mentioning that POSS‐containing hybrid hydrogels can be prepared in water and be used for 3D cell culture. In vitro cell viability study on human umbilical vein endothelial cells for 3D cell culture indicates POSS–PEG hydrogels have good compatibility. All of these results suggest that these POSS–PEG hybrid hydrogels exhibit the potential for tissue engineering scaffolds.  相似文献   

13.
Temperature‐ and pH‐responsive interpenetrating polymer network (IPN) hydrogels, with sodium alginate (SA) and poly(diallydimethylammonium chloride) (PDADMAC), constructed by a sequential IPN method, were studied. The characterizations of the IPN hydrogels were investigated by FTIR, DSC, and swelling tests under various conditions. The prepared IPN hydrogels exhibited relatively high swelling ratios, in the range of 380–690%, at 25°C. The swelling ratios of SA/PDADMAC IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the freezing and nonfreezing water contents of the hydrogels. The amount of free water increased with the increasing PDADMAC content of the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3705–3709, 2004  相似文献   

14.
A three dimensional porous hydrogel with suitable biological and mechanical properties are required for bone tissue engineering. Hydrogels of poly(lactic-ethylene oxide fumarate) (PLEOF), crosslinked with poly(ethylene glycol)-diacrylate (PEG-da) have desirable mechanical properties, however, their application for bone regeneration is limited due to the lack of cell motif sites within their structure. The aim of this study was to incorporate a naturally derived polymer such as gelatin into PLEOF hydrogels to promote their biological properties. Interpenetrating polymer network (IPN) was used as an efficient technique to acquire uniform mixture of these two polymers. Additionally gas foaming agents were used to create pores with average diameter of 250 μm in these IPN hydrogels. The concentrations of PEG-da and gelatin were optimized to tune the mechanical strength and degradation properties of these hydrogels. A compression modulus of 500 kPa was achieved for hydrogel fabricated with 400 mg/ml PLEOF, 200 mg/ml PEG-da and 150 mg/ml gelatin. The addition of gelatin to PLEOF elevated the compression modulus by two-fold and decreased the energy loss by 40%. The result of protein analysis demonstrated that IPN substantially enhanced the retention of physically crosslinked gelatin in the 3D structure of hydrogel. More than 50% of gelatin was retained in IPN hydrogel after two weeks of incubation in simulated physiological environment. Preserving gelatin in the hydrogel structure provides cell motif sites for a longer period of time, which is desirable for uniform cell proliferation. In vitro studies showed that primary human osteoblast cells adhered and proliferated in PLEOF-gelatin hydrogel. These results demonstrated the potential of using this IPN hydrogel for bone tissue engineering.  相似文献   

15.
Interpenetrating polymer networks (IPNs) composed of hyaluronic acid and poly(vinyl alcohol) hydrogels were prepared, and the influence of water and the drying kinetics were investigated. The IPN hydrogels were characterized with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The glass‐transition temperatures of the IPN hydrogels decreased with increasing water content. The bound water was the sum of the nonfreezing bound water and freezing bound water. From the DSC melting curves, the values of the total water and freezing bound water were evaluated for IPN hydrogels containing large amounts of water. At the same time, the bound water value was estimated with TGA. In the TGA curves, one‐step and two‐step weight losses, corresponding to free water and nonfreezing bound water, were observed. The bound water of the hydrophilic polymers broke the hydrogen bonding between the hydroxyl groups of the polymers. The swollen IPN hydrogels exhibited relatively high bound water contents (43.04–59.17%) by DSC and TGA. The bound water contents of the dry IPN hydrogel films were 10.2–15.29% by TGA. The drying reaction rate constant of the IPN hydrogel increased with increasing temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1467–1472, 2004  相似文献   

16.
Interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) (PVA) and monomer, N‐isopropylacrylamide (NIPAAm), diallyldimethylammonium chloride (DADMAC), or methacrylic acid (MAA) were prepared by using the sequential‐IPN method. The equilibrium swelling ratios of PVA/NIPAAm (VANP), PVA/DADMAC (VADC), and PVA/MAA (VAMA) are 412, 370, and 297 at 25°C, respectively. VANP had the highest swelling ratio in time‐dependent swelling behavior, whereas the swelling ratio of VAMA had the lowest. The n values of VANP, VADC, and VAMA are 0.72, 0.81, and 0.96, respectively. Transport of all IPN hydrogels is anomalous and their transport mechanisms are dominated by a combination of diffusion‐controlled and relaxation‐controlled systems. VAMA has the highest activation energy and VANP has the lowest activation energy. The values of all IPN hydrogels are from 4.66 to 16.49 kJ/mol, which proves that all IPN hydrogels are hydrophilic. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3310–3313, 2003  相似文献   

17.
Thiol–norbornene (thiol–ene) photoclick hydrogels have emerged as a diverse material system for tissue engineering applications. These hydrogels are crosslinked through light‐mediated orthogonal reactions between multifunctional norbornene‐modified macromers [e.g., poly(ethylene glycol) (PEG), hyaluronic acid, gelatin] and sulfhydryl‐containing linkers (e.g., dithiothreitol, PEG–dithiol, biscysteine peptides) with a low concentration of photoinitiator. The gelation of thiol–norbornene hydrogels can be initiated by long‐wave UV light or visible light without an additional coinitiator or comonomer. The crosslinking and degradation behaviors of thiol–norbornene hydrogels are controlled through material selections, whereas the biophysical and biochemical properties of the gels are easily and independently tuned because of the orthogonal reactivity between norbornene and the thiol moieties. Uniquely, the crosslinking of step‐growth thiol–norbornene hydrogels is not oxygen‐inhibited; therefore, gelation is much faster and highly cytocompatible compared with chain‐growth polymerized hydrogels with similar gelation conditions. These hydrogels have been prepared as tunable substrates for two‐dimensional cell cultures as microgels and bulk gels for affinity‐based or protease‐sensitive drug delivery, and as scaffolds for three‐dimensional cell encapsulation. Reports from different laboratories have demonstrated the broad utility of thiol–norbornene hydrogels in tissue engineering and regenerative medicine applications, including valvular and vascular tissue engineering, liver and pancreas‐related tissue engineering, neural regeneration, musculoskeletal (bone and cartilage) tissue regeneration, stem cell culture and differentiation, and cancer cell biology. This article provides an up‐to‐date overview on thiol–norbornene hydrogel crosslinking and degradation mechanisms, tunable material properties, and the use of thiol–norbornene hydrogels in drug‐delivery and tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41563.  相似文献   

18.
Graft copolymers and networks of gelatin were synthesized with three acrylamides (acrylamide, 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid, and N‐iso‐propylacrylamide) by using a redox initiator system consisting of ammonium peroxysulfate–ferrous ammonium sulfate in either the absence or the presence of a crosslinker (N,N‐methylene bisacrylamide) at two temperatures. Characterization of synthesized polymers was studied by FTIR and thermal studies to investigate evidence of grafting or interpenetrating network formation and to investigate the effect of reaction conditions and crosslinker concentration on the properties of synthesized polymers. Detailed investigation into water‐uptake properties of these hydrogels was carried out as a function of time, temperature, and pH. The inherent properties of the monomer incorporated onto gelatin collectively act as determinant of the water‐absorption behavior of the hydrogels. Sorption of Fe+2, Cr+6, and Cu+2 ions from their aqueous solutions was also studied on select hydrogels, where it was observed that metal ions are sorbed by effective partitioning between hydrogels and solution phase and apart from the nature of metal ions, and structural aspects of hydrogels also determine the quantum of metal ion uptake. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3856–3871, 2003  相似文献   

19.
Transparent and intumescent polymer‐silicate hydrogels were synthesized by free‐radical polymerization, in the presence of the redox initiators system (potassium persulphate/sodium thiosulphate) and cross‐linking monomer (N,N′‐methylenebisacrylamide). Hydrogels obtained in such a manner were rheologically tested and it was found that the same sample with a different sodium acrylate concentration polymerized faster when its content was lower. The spectroscopic and thermal analysis proved that the polymer combines with sodium silicate by hydrogen bonds and during thermal degradation only small polymer fragments and water molecules were released. NMR studies have shown that the content of water glass causes shorter relaxation times. Conducted fire tests showed that glass panes systems filled with the tested hydrogels meet the relevant construction standards and what is their big advantage, a thin 1 mm layer of polymer‐silicate gel is sufficient for this purpose. We believe that these results will contribute to the development of intumescent hydrogels with enhanced fire‐retardant properties. POLYM. ENG. SCI., 59:1279–1287 2019. © 2019 Society of Plastics Engineers  相似文献   

20.
A temperature‐ and pH‐dependent hydrogel was studied with interpenetrating polymer network (IPN) hydrogels constructed with water‐insoluble chitosan and polyallylamine. Various IPNs were prepared from different weight ratios of chitosan–polyallylamine. Crosslinked‐IPN hydrogels exhibited relatively high equilibrium water content (EWC) in the range 80–83%. The EWC of IPN hydrogels depended on pH and the amount of complex, which is the content of chitosan and polyallylamine. The differential scanning calorimeter (DSC) thermogram of fully swollen IPN hydrogels appeared between 3 to 4 °C. The IPNs exhibited two glass‐transition temperatures (Tgs), indicating the presence of phase separation in the IPNs as exhibited by dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 498–503, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号