首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The durability of metal plate proton exchange membrane fuel cell (PEMFC) stack is still an important factor that hinders its large-scale commercial application. In this paper, we have conducted a 1000 h durability test on a 1 kW metal plate PEMFC stack, and explored the degradation of the core components. After 1000 h of dynamic load cycles, the voltage decay percentage of the stack under the current densities of 1000 mA cm?2 is 5.67%. By analyzing the scanning electron microscopy (SEM) images, the surfaces of the metal plates are contaminated locally by organic matter precipitated from the membrane electrode assembly (MEA). The SEM images of the catalyst coated membrane (CCM) cross section indicate that the MEA has undergone severe degradation, including the agglomeration of the catalyst layer, and the thinning and perforation of the PEM. These are the main factors that cause the rapid increase in hydrogen crossover flow rate and performance decay of the PEMFC stack.  相似文献   

2.
The well-known challenges to overcome in PEM fuel cell research are their relatively low durability and the high costs for the platinum catalysts. This work focuses on degradation mechanisms that are present in open-cathode PEM fuel cell systems and their links to the decaying fuel cell performance. Therefore a degraded, open-cathode, 20 cell, PEM fuel cell stack was analyzed by means of in-situ and ex-situ techniques. Voltage transients during external perturbations, such as changing temperature, humidity and stoichiometry show that degradation affects individual cells quite differently towards the end of life of the stack. Cells located close to the endplates of the stack show the biggest performance decay. Electrochemical impedance spectroscopy (EIS) data present non-reversible catalyst layer degradation but negligible membrane degradation of several cells. Post-mortem, ex-situ experiments, such as cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) show a significant active area loss of the first cells within the stack due to Pt dissolution, oxidation and agglomeration. Scanning electron microscope (SEM) images of the degraded cells in comparison with the normally working cells in the stack show severe carbon corrosion of the cathode catalyst layers.  相似文献   

3.
A review of polymer electrolyte membrane fuel cell stack testing   总被引:2,自引:0,他引:2  
This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.  相似文献   

4.
Recoverable degradation of a proton exchange membrane fuel cell (PEMFC) under different relative humidities (RHs) after a whole night rest was investigated. A single cell was operated under drive cycle to simulate the working conditions of fuel cell vehicle. It was found that the cell performance decreased after 5 h operation and recovered mostly after one night rest at higher humidities, i.e. 100%, 75% and 50% RH for both cathode and anode sides; while continuous decrease took place at lower humidity, 35%RH. Polarization curve, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were conducted before and after every 5 h drive cycle for investigating the mechanism of the recoverable degradation. It was found that water content, current density and thermal management might be the main contributions to the performance degradation, by impacting the membrane conductivity, internal resistance, electrode kinetics, and catalyst utilization. A good understanding of voltage recovery phenomenon after several hours rest and its effect on durability will be helpful in improving the reliability and durability of PEMFC.  相似文献   

5.
This study examines the operating characteristics and durability of a small direct methanol fuel cell (DMFC) stack (volume: 39.6 cm3). To investigate the operating characteristics in a real multi-user operating mode, various load cycles (such as gradual acceleration and deceleration), two operating modes (current mode or voltage mode) and four interrupted operating methods (load on-off, load-methanol on-off, load-air on-off, and load-methanol-air on-off) are used. The durability of the DMFC stack is examined at a constant voltage of 2.4 V (0.4 V per cell) by using the load-methanol-air on-off mode for more than 2000 h. In these tests, the DMFC stack exhibits a rapid, stable and dynamic response regardless of the load cycle and operating mode, though the stack performance and response behaviour vary with the interrupted operating modes. Among the operating modes, the air-interruption modes exhibit better stability and higher performance. Moreover, the load-methanol-air on-off mode provides the stack with good durability and a high performance in a long-term test of 2045 h.  相似文献   

6.
One thousand-hour continuous test of a propane-fueled portable solid oxide fuel cell (SOFC) based hot zone has been successfully performed in order to assess the degradation characteristics of its performance. Comparing the different operating modes, the degradation rate based on constant current mode was three times lower than that based on constant voltage mode. The stack power output initially increased 3.7% during the first 34 h probably due to electrode activation processes improving cell performance under polarization during the early stage of operation, and then gradually decreased. It has been clearly illustrated that operating condition of constant current is more beneficial to the long term performance test. Further, based on thermodynamics analysis, the electromotive force of nickel oxidation is 13.2 V for the stack voltage at the stack temperature of 740 °C. From the initial current-power curve data, it can be derived that if the hot zone durability test was performed at constant current of 9 A from the beginning, the stack degradation rate would be 15% per 1000 h. The 1000-h durability test and analysis can better understand how to run longer term stability on the hot zone and guide the optimization of hot zone operating conditions.  相似文献   

7.
Durability of polymer exchange membrane (PEM) fuel cells under a wide range of operational conditions has been generally identified as one of the top technical gaps that need to be overcome for the acceptance of this fuel cell technology as a commercially viable power source, especially for automotive and portable applications. In this study, a 1200 h lifetime test was conducted with a six-cell PEM fuel cell stack under close to open-circuit conditions. In situ measurements of the hydrogen crossover rate through the membrane, high frequency resistance and electrochemically active surface area of each single cell, in combination with cell polarization curves, were used to investigate the degradation mechanisms. Direct gas mass spectrometry of the cathode exhaust gas indicated the formation of HF, H2O2 and CO2 during the durability testing. The overall cell degradation rate under this accelerated stress testing is approximately 0.128 mV h−1. The cell degradation rate for the first 800 h is much lower than that after 800 h, which may result from the dominance of different degradation mechanisms. For the first period, the degradation of fuel cell performance was mainly attributed to catalyst decay, while the subsequent dramatic degradation is likely caused by membrane failure.  相似文献   

8.
A pilot PEM Power Plant is described utilizing by-product hydrogen from the electrolysis of brine in the Akzo Nobel chlor-alkali plant at Delfzijl, the Netherlands. The performance of this 70 kW fuel cell unit is reported for a period of five and a half years, starting in April 2007. Results of measurements of cell voltages on PEM fuel cells with different types of Membrane Electrode Assemblies are reported for an operational period of 30,000 h. Stack performance is highly dependent on the MEA it contains, leading to a wide variety in reversible and irreversible voltage decay rates. Best performing MEAs enable stack operation of more than 16,000 h of power generation, with an average voltage decay rate of 2.5 μV/h. The reversible decay is linked to contaminants, primarily at the anode.  相似文献   

9.
Durability is one of the obstacles to the large-scale commercialization of proton exchange membrane fuel cell (PEMFC) stacks. Understanding its decay behavior is a prerequisite for improving durability. In this study, rapid degradation characteristics of an air-cooled PEMFC stack are investigated. Due to the simultaneous presence of various degradation sources, the maximum power of the PEMFC stack has been reduced by 39.6% after just 74.6 h of operations. Performance degradation characteristics are sought by analyzing the cell voltage, temperature distribution, ion chromatography, and surface morphology of the gas diffusion layer. The result shows that abnormal cell voltage and temperature distribution can reflect the problematic location. The fluoride ion emission rate is 0.111 mg/day, which proves that the membrane has been seriously degraded. Contact angle reduction and impurities attached to the surface of the gas diffusion layer lead to the water management failure. It is also found that the main factor for performance degradation could be different under different current conditions. And more information can be found under higher current conditions during monitoring the decay of PEMFCs. This study helps to deepen the understanding of performance degradation characteristics.  相似文献   

10.
In this paper, the stimulated recovery of a proton exchange membrane (PEM) fuel cells after natural degradation has been investigated. The performance degradation of a 63-cell PEM fuel cell stack over a storage interval of 40,000 h at temperature 24 °C and relative humidity 65% was analyzed by static and dynamical tests. The average cell voltage degradation rate was 309 μV h−1, averaged over a range of currents. The performance was then partially recovered by application of a high frequency pulsing procedure after which the effective average degradation rate (from the commencement of storage to after the recovery) was approximately 170 μV h−1. This indicates the existence of both recoverable and irrecoverable degradations in the fuel cell. Furthermore, the equivalent circuit model and membrane resistance were used to investigate the degradation mechanisms, suggesting that the natural degradation of the fuel cell is mainly caused by the increase of the resistance, which is most likely caused by membrane dehydration.  相似文献   

11.
The relative slippage between the open-cell metal foam flow fields and other parts in a fuel cell due to vehicular and flow-induced vibrations causes fretting. The material degradation due to fretting in nickel struts contaminate the stack and is investigated using simulated experiments. The as-formed strut surfaces are rough and increases the material loss during fretting. The total wear volume associated with a single contact in 22,000 cycles is 4.66 E?04 mm3. The contamination in the stack is estimated assuming a dodecahedron unit cell geometry and neglecting the fretting corrosion. About 47 g of debris is expected to be generated when an 8 ppi nickel foam flow fields used in a 50-cell stack for 8700 hours of operation. In addition, the generated flake shaped debris (<10 μm) can obstruct the flow of gases by clogging the gas diffusion layer. The proposed contamination estimation methodology will aid in performance prediction during service.  相似文献   

12.
A vehicular fuel cell is dynamically operated at the demand of the driver, so that the durability of the fuel cell quickly deteriorates. This study analyzes the durability of a 3-cell short stack under normal vehicle operation. An acceleration test is scheduled with operation temperatures of 55 °C and 70 °C at 50% relative humidity for 300 h. The dynamic load cycle (DLC) conditions are a repetition of the New European Driving Cycle (NEDC), which can allow a short stack to run on the vehicle operating load. At 100-hour intervals, recovery procedures are conducted to understand the order of performance retrieval. Significant stack degradation is observed at 75 °C operation for 300 h. Results show that the recovery protocol can return the performance of the fuel cell at a low and a middle current density regime, but it is hard to recover the performance at a very high current density regime. Performance recovery is very effective for lower temperature operation (55 °C), but the recovery procedures only returned about 4% of the performance at 300 h and 75 °C.  相似文献   

13.
The hydrogen proton exchange membrane (PEM) fuel cells are promising to utilize fuel cells in electric vehicle (EV) applications. However, hydrogen PEM fuel cells are still encountering challenges regarding their functionality and degradation mechanism. Therefore, this paper aims to study the performance of a 3.2 kW hydrogen PEM fuel cell under accelerated operation conditions, including varying fuel pressure at a level of 0.1–0.5 bar, variable loading, and short-circuit contingencies. We will also present the results on the degradation estimation mechanism of four fuel cells working at different operational conditions, including high-to-low voltage range and high-to-low temperature variations. These experiments examine over 180 days of continuous fuel cell working cycle. We have observed that the drop in the fuel cells' efficiency is at around 7.2% when varying the stack voltage and up to 14.7% when the fuel cell's temperature is not controlled and remained at 95 °C.  相似文献   

14.
Acid-doped polybenzimidazole (PBI) membrane and polytetrafluoroethylene (PTFE)-based electrodes are used for the membrane electrode assembly (MEA) in high-temperature polymer electrolyte fuel cells (HTPEFCs). To find the optimum PTFE content for the catalyst layer, the PTFE ratio in the electrodes is varied from 25 to 50 wt%. To improve the performance of the electrodes, PBI is added to the catalyst layer. With a weight ratio of PTFE to Pt/C of 45:55 (45 wt% PTFE in the catalyst layer), the fuel cell shows good performance at 150 °C under non-humidified conditions. When 5 wt% PBI is added to the electrodes, performance is further improved (250 mA cm−2 at 0.6 V). Our 20 W class HTPEFC stack is fabricated with a novel MEA. This MEA consists of 8 layers (1 phosphoric acid-doped PBI membrane, 2 electrodes, 1 sub-gasket, 2 gas-diffusion media, 2 gas-sealing gaskets). The sub-gasket mitigates the destruction of a highly acid-doped PBI membrane and provides long-term durability to the fuel cell stack. The stack operates for 1200 h without noticeable cell degradation.  相似文献   

15.
The cell voltage uniformity of the proton exchange membrane fuel cell stack, which may consist of tens or hundreds of cells in series, plays a significant role in the stack's lifetime and performance. But it is challenging to predict the multi-cell voltages and the uniformity with a physics-based model due to complex stack geometry and huge computation efforts. In this work, we develop an artificial neural network model to estimate the steady-state cell voltage distributions of a 60 kW 140-cell stack. The optimized and well-trained model can efficiently reproduce the 140-cell voltages at different operating conditions with the error of less than 2 mV. The increased cathode gas pressure improves the cell voltage consistency and stack performance, while the voltage uniformity worsens with ascending load current. The efficient model prediction of cell voltages is beneficial for accurate evaluation of fuel cell performance, health state, and reliability.  相似文献   

16.
Many places experience extreme temperatures below −30 °C, which is a great challenge for the fuel cell vehicle (FCV). The aim of this study is to optimize the strategy to achieve rapid cold start-up of the 30-cell stack at different temperature conditions. The test shows that the stack rapidly starts within 30 s at an ambient temperature of −20 °C. Turning on the coolant at −25 °C show stability of the cell voltage at both ends due to the end-plate heating, however, voltage of intermediate cells fluctuates sharply, and successful start-up is completed after 60 s. The cold start strategy changes to load-voltage cooperative control mode when the ambient temperature reduced to −30 °C, the voltage of multiple cells in the middle of the stack fluctuate more drastic, and start-up takes 113 s. The performance and consistency of the stack did not decay after 20 cold start-up experiments, which indicates that our control strategies effectively avoided irreversible damage to the stack caused by freeze-thaw process.  相似文献   

17.
Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.  相似文献   

18.
In this paper, a compact 3 kW air-cooled fuel cell stack consists of 95 single cells with metallic bipolar plate is designed. Compared with graphite bipolar plates, metal stamping bipolar plates are lighter in weight, smaller in size and faster in heat conduction, therefore the transient behaviors of the voltage and temperature of each cell are analyzed. The results show that the heat distribution of the air-cooled fuel cell is very uniform, and the temperature difference between the inlet and outlet of cathode air of the fuel cell is lower than 15 °C. The individual cell voltage uniformity percentage variation value reaches 7% when the drop in the loading current is over 25 A. Moreover, the voltage uniformity variation value is higher than 4% when the loading current output exceeds 35A. Thus, a large drop in loading and a high loading current easily increase the voltage uniformity variation value. Long-term continuous operation has a negative influence on the performance of the stack, especially the last fuel cell near the anode outlet. Anode purging can effectively alleviate the uniformity percentage variation in the voltages. The designed air-cooled fuel cell exhibits good performance and strong environmental adaptability.  相似文献   

19.
System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation, the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here, we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated, the resulting mechanical damage is investigated, and degradation mechanisms are proposed. Overall, only a small voltage drop is observed after the durability tests, only minor damage occurs in the electrocatalyst layer, and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs.  相似文献   

20.
Water flooding causes severe degradation of the performance and lifetime of proton exchange membrane fuel cell (PEMFC). In this study, a novel PEMFC stack with in-built moisture coil cooling was designed and the effects of moisture coil cooling on water management in the new PEMFC stack under various operating conditions were investigated. The result showed that the performance of the PEMFC stack was significantly improved due to the moisture condensation under high current density, high operating temperature, high relative humidity and high operating pressure. The output power was increases by 21.62% (525.71 W) at 1600·mA cm−2 while the increased parasitic power was no more than 35W. Moreover, degradation of the cathode catalyst layer after 100 h operation was also reduced by using moisture coil cooling. Compared with the situation without moisture condensation, the maximum decay rate of the cathode catalyst layer thickness after 100 h operation was reduced by 13.01%. Accordingly, the novel design is valuable and can be widely used in the future design of PEMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号