首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatigue behavior of poly (ethylene terephthalate) industrial fibers is a key issue in their long-term service for engineering applications. To have a comprehensive understanding of the fatigue behavior, the high-tenacity (HT) and low-shrinkage (LS) PET fibers were selected to analyze the room temperature dynamic fatigue properties with different stress. Various techniques such as WAXD/SAXS and FTIR were employed to study the multiscale structure changes to disclose the fatigue mechanisms. Although the crystalline structure including orientation and crystallinity did not change, the amorphous structures varied with fatigue stress. The HT fiber exhibited a higher fatigue recovery ratio. The slight increase in amorphous orientation, and amorphous thickness was attributed to the oriented coiled molecular chains during tensile fatigue stress. In contrast, the LS fiber experienced plastic fatigue deformation with a lower recovery ratio. The molecular chains in the large amorphous domain are easily extended and oriented under tensile loading, increasing amorphous orientation and lamellar thickness. The fatigue mechanism for the LS fiber involved the conformation transition from gauche to trans conformers and a higher proportion of irreversible amorphous regions were formed. It is indicated that developing industrial filaments with small amorphous orientation and content is crucial to improving their fatigue resistance.  相似文献   

2.
Structure and properties of commercially available fully oriented thermoplastic and thermotropic polyester fibers have been investigated using optical birefringence, infrared spectroscopy, wide‐angle X‐ray diffraction and tensile testing methods. The effect of the replacement of p‐phenylene ring in poly(ethylene terephthalate) (PET) with stiffer and bulkier naphthalene ring in Poly(ethylene 2,6‐naphthalate) (PEN) structure to result in an enhanced birefringence and tensile modulus values is shown. There exists a similar case with the replacement of linear flexible ethylene units in PET and PEN fibers with fully aromatic rigid rings in thermotropic polyesters. Infrared spectroscopy is used in the determination of crystallinity values through the estimation of trans conformer contents in the crystalline phase. The analysis of results obtained from infrared spectroscopy data of highly oriented PET and PEN fibers suggests that trans conformers in the crystalline phase are more highly oriented than gauche conformers in the amorphous phase. Analysis of X‐ray diffraction traces and infrared spectra shows the presence of polymorphic structure consisting of α‐ and β‐phase structures in the fully oriented PEN fiber. The results suggest that the trans conformers in the β‐phase is more highly oriented than the α‐phase. X‐ray analysis of Vectran® MK fiber suggests a lateral organization arising from high temperature modification of poly(p‐oxybenzoate) structure, whereas the structure of Vectran® HS fiber contains regions adopting lateral chain packing similar to the room temperature modification of poly(p‐oxybenzoate). Both fibers are shown by X‐ray diffraction and infrared analyses to consist of predominantly oriented noncrystalline (63–64%) structure together with smaller proportion of oriented crystalline (22–24%) and unoriented noncrystalline (12–15%) structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 142–160, 2006  相似文献   

3.
The present study examined poly(ethylene terephthalate) (PET) and a series of statistical and blocky copolymers in which up to 30% of the terephthalate was replaced with isophthalate by copolymerization and melt blending, respectively. Some level of transesterification during processing of melt blends resulted in blocky copolymers, as confirmed by NMR. Random and blocky copolymers exhibited similar properties in the glassy state, including a single glass transition, due to miscibility of the blocks. However, random copolymerization effectively retarded cold‐crystallization from the glass whereas blocky copolymers readily cold‐crystallized to a crystallinity level close to that of PET. The polymers were oriented at four temperatures in the vicinity of the Tg and characterized by oxygen transport, wide‐angle X‐ray diffraction, positron annihilation lifetime spectroscopy, and infrared spectroscopy. Orientation of all the copolymers resulted in property changes consistent with strain‐induced crystallization. However, blocky copolymers oriented more easily than random copolymers of the same composition and after orientation exhibited slightly lower oxygen permeability, higher density, and higher fraction trans conformers. Analysis of oxygen solubility based on free volume concepts led to a two‐phase model from which the amount of crystallinity and the amorphous phase density were extracted. Dedensification of the amorphous phase correlated with the draw temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1615–1628, 2005  相似文献   

4.
Orientation of initially amorphous poly(ethylene terephthalate) films and sheets was carried out by means of tensile drawing in a tensile tester, roll-drawing using a series of four rolling stations, and by die-drawing. The drawing temperature was 80 and 90°C and drawing rate ranged from 2 to 20 cm/min in the different processes. Crystallinity was observed to increase with draw ratio for all these processes. The onset of crystallinity development depends on the drawing rate. The glass transition temperature was essentially constant and crystallization temperature decreased with increasing draw ratio. The trans conformers content was observed to increase with draw ratio at the expense of the gauche conformers for the three processes. The orientation of the trans conformers increases readily from the beginning of draw and saturates rapidly. The orientation of the gauche conformers was negligible. Some differences are observed for the behavior of the 1020 and 730 cm?1 benzene ring bands, which may be due to differences in the benzene ring configuration at the surface as a result of different deformation mechanisms for the die and roll-drawing. However, further investigations to elucidate this hypothesis are needed. The mechanical properties obtained in the longitudinal direction increased for all the processes. In the transverse direction, the roll and die-drawing processes induced a decrease in modulus and strength with increasing draw ratio, similar to that observed for uniaxial orientation. This indicates that these processes are mainly uniaxial, despite the plane strain nature of the deformation.  相似文献   

5.
A winding machine with heat treatment was newly developed to strengthen ramie yarns. During the treatment process, ramie yarn in normal or wet state was wound on a winding machine and passed continuously through a heater at 100 and 150°C, respectively, with different winding speeds and tensions. Higher tensile strength and stiffness of ramie yarn was achieved after heat treatment on wet yarn and winding speed had a significant influence on the tensile properties of yarns. However, a little decline in tensile strength was found for ramie yarns after heat treatment in normal state. This implies that the water‐swollened structure of ramie yarn during the heat treatment is crucial in strengthening yarns. In the case of heat treatment on wet yarns, the effect of winding tension on the tensile properties of yarns was studied. It was found that the tensile strengths and Young's moduli of ramie yarns first increased and then reached equilibrium as the winding tension was increased. The crystallinity calculated from X‐ray diffraction diagrams showed a slight decrease in heat‐treated ramie yarns whereas the crystalline orientation factors had no appreciable change. It was considered that the improved effect was related to the more oriented molecular chains in amorphous region and optimized yarn structure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The microstructures of amorphous and crystalline poly(ethylene terephthalate) (PET) homopolymers have been determined in terms of their trans and gauche conformational isomer contents by using a combination of infrared and density characterization techniques. The effects of isothermal crystallization (from the glassy state between 105–150°C), as well as the effects of different monomer units in the polymerization process, have been investigated. Results indicate that samples, polymerized from different monomer and catalyst systems, show different microstructures in terms of trans and gauche isomers.These variations result in significant differences in PET optical properties. Further investigations find that these dissimilar behaviors accompany conformational isomer variations in the amorphous phase, suggesting different transformation mechanisms of trans and gauche isomers at early stages of crystallization. These unlike microstructural transformation processes give rise to further changes, which are evident in terms of the intensity of Vv light scattering, haze values, thermal properties, and FTIR spectral results. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1965–1976, 1998  相似文献   

7.
Chain confinement in electrospun nanofibers of PET with carbon nanotubes   总被引:1,自引:0,他引:1  
Huipeng Chen 《Polymer》2009,50(3):872-64
Composite nanofibers of poly(ethylene terephthalate), PET, with multiwalled carbon nanotubes (PET/MWCNT) were prepared by the electrospinning method. Confinement, chain conformation, and crystallization of PET electrospun (ES) fibers were analyzed as a function of the weight fraction of MWCNTs. For the first time, we have characterized the rigid amorphous fraction (RAF) in polymer electrospun fibers, with and without MWCNTs. The addition of MWCNTs causes polymer chains in the ES fibers to become more extended, impeding cold crystallization of the fibers, resulting in more confinement of PET chains and an increase in the RAF. The fraction of rigid amorphous chains greatly increased with a small amount of MWCNT loading: with addition of 2% MWCNTs, RAF increased to 0.64, compared to 0.23 in homopolymer PET ES fibers. Spatial constraints also inhibit the folding of polymer chains, resulting in a decrease in crystallinity of PET. For fully amorphous PET/MWCNT composites, MWCNTs do not affect the chain conformation of PET in the ES fibers. For cold crystallized PET/MWCNT composite nanofibers, more trans conformers were formed with the addition of MWCNTs. The increase of RAF (chain confinement) is associated with an increase of the concentration of the trans conformers in the amorphous region as the MWCNT concentration increases in the semicrystalline nanofibers.  相似文献   

8.
L.S. Saunders  J.I. Cail 《Polymer》2007,48(5):1360-1366
Quantitative infra-red data on oriented poly(ethylene terephthalate) (PET) films have been used to determine the changes in the proportions of the trans and gauche conformers of the glycol residues and the development of molecular orientation of the terephthaloyl groups as functions of draw ratio. The results are compared with predictions for the stretching of a rubber-like network based on rotational-isomeric-state (RIS) Monte Carlo (MC) modelling. It is shown that both sets of data are consistent with stretching an entangled molecular network of about 10 PET monomer units per network chain. The onset of crystallisation at a draw ratio of 2.5 affects the glycol trans-gauche conformer contents but has no detectable effect on terephthaloyl orientation.  相似文献   

9.
The crystalline structure, dynamics, and gas transport properties (i.e., the gas permeability, gas diffusion coefficient, and gas solubility coefficient) of poly(tetrafluoroethylene‐co‐perfluoroethylvinylether) (PFA) membranes were systematically investigated via differential scanning calorimetry, wide/small/ultra‐small‐angle X‐ray scattering, and quasielastic neutron scattering measurements. We evaluated the gas transport properties using a constant‐volume/variable‐pressure method. The gas permeability and the gas diffusion coefficient decreased with increasing crystallinity of the PFA membranes at crystallinities below 32%. However, in membranes with a crystallinity of 32% or greater, these parameters depended on the characteristics of the gas molecules, such as their kinetic diameter. The so‐called long spacing period and the thickness of the crystalline/amorphous regions increased with crystallinity according to the small/ultra‐small‐angle X‐ray scattering results. Furthermore, the quasielastic neutron scattering measurements indicated that the scattering law was well fitted to a sum of narrow and broad Lorentzian components. In particular, the narrow components, that is, the local motion of amorphous components and side chains, increased with crystallinity. These results suggest that large gas molecules could pass through the PFA membranes, assisted by the motion in the amorphous region. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45665.  相似文献   

10.
L.S. Saunders  J.I. Cail 《Polymer》2004,45(7):2357-2366
The Monte-Carlo (MC) method developed to model the elastomeric stress-strain behaviour of polyethylene (PE), poly(dimethyl siloxane) (PDMS) and poly(ethylene terephthalate) (PET) networks and the stress-optical behaviour of PE networks is now developed to investigate further the stress-strain behaviour of PET networks. Accurate infrared (IR) spectrometry measurements have been used to determine the populations of gauche conformers in the glycol residues of PET chains in melts. The proportion of gauche states was found to be 76%, consistent with the rotational energy difference of −4.16 kJ mol−1 between trans and gauche states used previously.The greater conformational flexibility of the PET chain compared with the PE chain leads to lower network moduli and smaller deviations from Gaussian and affine network behaviour. Previous results are briefly reviewed and new comparisons of the elastic behaviour of PET and PE chains are made using normalised plots. Subsequent publications will apply the present results to interpreting the measured stress-strain and the stress-optical properties of entangled PET melts.  相似文献   

11.
Series of copolyesters based on poly(propylene succinate) (PPS) and poly(butylene succinate) (PBS), which can be produced from biological feedstock, and postconsumer poly(ethylene terephthalate) (PET) were synthesized with the aim of developing sustainable materials, which combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic polyesters were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,3‐propanediol, and 1,4‐butanediol followed by melt reaction with PET in bulk. The content of PET segments in the polymer chains was varied from about 10 to 100 wt % per 100 wt % PPS or PBS. The effect of the introduction of the PET segments on the structure, thermal, physical, and mechanical properties was investigated. The composition and structure of these aliphatic/aromatic copolyesters were determined by NMR spectroscopy. The thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The level of crystallinity was studied by means of DSC and wide‐angle X‐ray scattering. A depression of melting temperature and a reduction of crystallinity of copolyesters with increasing content of PET segments were observed. Consequently, the tensile modulus and strength of copolyesters decreased, and the elongation at break increased with PET content in the range of 10?50 wt %. Thus, depending on PET content, the properties of copolyesters can be tuned ranging from semicrystalline polymers possessing good tensile modulus (380 MPa) and strength (24 MPa) to nearly amorphous polymer of high elongation (~800%), and therefore they may find applications in thermoplastics as well as elastomers or impact modifiers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39815.  相似文献   

12.
Cold draw processing of poly(ethylene terephthalate) yarns has been discovered that yields a sheath/fibrillar core (s/fc) microstructure in the each fiber of a yarn. When aged, unoriented, noncrystalline spun yarns were cold drawn, high (>5.7 : 1) draw ratios could be achieved and an s/fc microstructure resulted. Cold drawing also generated a high oriented amorphous content. The tensile and shrinkage properties of yarns with the s/fc microstructure and high oriented amorphous content were examined as function of processing (drawing, annealing, and relaxing). The microstructure was examined by scanning electron microscopy, transmission electron microscopy, small‐angle X‐ray scattering, wide‐angle X‐ray scattering, and optical microscopy. The fibrillar microstructure survives all processing. Management of the oriented amorphous component under heat and tension contributes to the greater stiffness (modulus) and dimensional stability of processed s/fc yarns. The properties of yarns with an s/fc microstructure are compared with more conventional hot drawn yarns. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2335–2352, 1999  相似文献   

13.
The structures of ultra‐thin films of vinylidene fluoride and trifluoroethylene copolymer were characterized using Fourier transform infrared reflection absorption spectroscopy (FTIR‐RAS), FTIR transmission spectroscopy (FTIR‐TRS), atomic force microscopy, and wide‐angle X‐ray diffraction. The ferro‐electricity was determined from polarization charge (a displacement (D)–electric field (E) hysteresis). FTIR‐RAS and FTIR‐TRS measurements showed that the molecular chains of polymers (crystal c‐axis) near the substrate tended to align parallel to the substrate. However, thermal annealing of the sample films at temperatures above 145 °C caused a marked change in molecular alignment of the polymer chains (crystal c‐axis) from parallel to normal to the substrate, and, further, caused a conformation change from trans to partially gauche forms. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
The structure and thermal behavior of poly(lactic acid) (PLA) multifilament yarns were studied by complementary techniques of differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and wide angle X‐ray diffraction (WAXD). As for PLA filaments, notable differences in the WAXD patterns, DSC curves, and FTIR spectra were observed. The combination of the WAXD and FTIR results showed that PLA samples with different crystallinity contain α‐form crystal structure. The FTIR spectra of the filaments were analyzed to study their crystallinity and crystal structure. The total crystallinity of the PLA filaments was obtained from the percent area loss of the skeletal amorphous band at 955 cm?1. Crystalline fraction from FTIR and DSC were comparable with each other. The C?O stretching region, which is sensitive to crystallization and dipole–dipole interactions, was evaluated to provide information about chain conformers and crystallinity of the samples. Depending on the processing conditions, double melting peaks were observed in the DSC curves of the samples. This exhibited the structural reorganization of the crystal phase during heating affected by heating and cooling rate. In the DSC curves of the nearly amorphous multifilament yarn, the exothermic peak observed right above the glass transition temperature (Tg) indicated two relaxed and deformed amorphous regions. However, the multifilament yarn with higher crystallinity showed just endothermic melting peak after its glass transition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Wide-angle X-ray scattering provides a direct link to the local structure of non-crystalline materials. Methods of obtaining structural parameters from the scattering functions are described. Comparison of both scattering and real space functions calculated from a wide range of models with those obtained by experiment shows that the chains in molten polyethylene are irregular. The measurements confirm that the chain conformation comprises 60% trans bonds and 40% gauche, the sequences being random apart from the exclusion of pairs of gauche of opposite sign, and that the energy difference between the trans and gauche states is between 500–700 cal mol?1. The packing of the irregular chains is modelled using a novel approach based on the geometry of randomly packed spheres. There is no evidence for significant correlation of segmental orientation.  相似文献   

16.
Structural investigations of poly(ethylene terephthalate)‐graft‐polystyrene (PET‐g‐PS) films prepared by radiation‐induced grafting of styrene onto commercial poly(ethylene terephthalate) (PET) films were carried out by FTIR, X‐ray diffraction (XRD), and differential scanning calorimetry (DSC). The variation in the degree of crystallinity and the thermal characteristics of PET films was correlated with the amount of polystyrene grafted therein (i.e., the degree of grafting). The heat of melting was found to be a function of PET crystalline fraction in the grafted films. The grafting is found to take place by incorporation of amorphous polystyrene grafts in the entire noncrystalline (amorphous) region of the PET films and at the surface of the crystallites. This results in a decrease in the degree of crystallinity with the increase in the degree of grafting, attributed to the dilution of PET crystalline structure with the amorphous polystyrene, without almost any disruption in the inherent crystallinity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1949–1955, 2002; DOI 10.1002/app.10515  相似文献   

17.
Synchrotron radiation wide angle X‐ray diffraction (WAXD) and small angle X‐ray scattering (SAXS) were performed to study the structures of four typical types of poly(ethylene terephthalate) (PET) industrial yarns. Three‐dimensional structural models of the yarns and comprehensive insights into the process–structure–property relationships were gained. High spinning speed, low draw ratio, and high heat‐setting temperatures lead to HMLS yarns with high crystallinity, high amorphous orientation, densely packed lamellar stacks, and a small tilting angle of crystalline lamellae. High draw ratio tends to result in PET industrial yarns with large long period and a large tilting angle of lamellae. Heat‐setting process has a significant influence on the amorphous orientation and crystalline structures, such as crystallinity, crystallite size, as well as crystal grain number. Compared with other structure characteristics, amorphous orientation plays a more important role in determining the tenacity, initial modulus, part load elongation, ultimate elongation, as well as shrinkage of PET industrial yarns. The crystal grain number seems to have an effect on the initial modulus, while the long period influences the elongation of the yarns to some extent. In addition, the small tilting angle of crystalline lamellae may relate to the dimensional stability of PET yarns. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42512.  相似文献   

18.
The influence of drawing on the limiting draw ratio upon formation of the morphological structure of fibers spun from binary polypropylene (PP) blends was studied. Fibers were spun from a fiber‐grade CR‐polymer and from the blends of a fiber‐grade CR‐polymer with a molding‐grade polymer in the composition range of 10–50 wt % added. As‐spun fibers were immediately moderately and additionally highly drawn at the temperature of 145°C. The structure and morphology of these fibers were investigated by small‐angle X‐ray scattering, wide‐angle X‐ray scattering, differential scanning calorimetry, scanning electron microscopy, density, birefringence, and sound velocity measurements. It was shown that continuously moderately drawn fibers are suitable precursors for the production of high tenacity PP fibers of very high modulus, because of so called oriented “smectic” structure present in these fibers. With drawing at elevated temperature, the initial metastable structure of low crystallinity was disrupted and a c‐axis orientation of monoclinic crystalline modification was developed. Hot drawing increased the size of crystallites and crystallinity degree, the orientation of crystalline domains, and average orientation of the macromolecular chains and resulted in extensive fibrillation and void formation. It was found that the blend composition has some influence on the structure of discontinuously highly drawn fibers. With increasing the content of the molding‐grade polymer in the blend, the size of crystalline and amorphous domains, density and crystallinity, as well as amorphous orientation decreased. Relationship has been established between the mechanical properties, crystallinity, and orientation of PP fibers. It was confirmed that by blending the fiber‐grade CR‐polymer by a small percentage of the molding‐grade polymer, maximization of elastic modulus is achieved, mainly because of higher orientation of amorphous domains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1067–1082, 2006  相似文献   

19.
We have improved the conventional analytical method of the scattering data obtained with in‐situ synchrotron X‐ray scattering experiments, which is applicable to the structural characterization of the film during stretching. Four components of molecular chains in the film are divided from two‐dimensional wide‐angle X‐ray diffraction patterns. These components are the oriented crystals, the unoriented ones, the oriented amorphous chains, and the unoriented ones, respectively. This method allows to evaluate directly the degree of orientation of the amorphous chains and the amount of the oriented amorphous fraction in addition to each evaluation for the crystalline regions. This method is applied to the structural characterization of the poly(vinyl alcohol) (PVA) film during stretching in boric acid aqueous solutions, suggesting that boric acid accelerates orientation of molecular chains in the amorphous regions, and increases the oriented amorphous fraction by producing the cross‐links between the PVA chains and hindering strain‐induced crystallization. At a film break on stretching in the 3 wt% boric acid solution, the oriented amorphous fraction increases up to 70%, which is much higher compared to that in the film stretched in water, 45%. POLYM. ENG. SCI., 55:513–522, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
Samples of partially oriented yarn PET fibers were uniaxially drawn below the glass transition temperature (cold-drawing) before exposure to supercritical carbon dioxide (scCO2) in the absence and presence of tension at a temperature of 80 °C and a pressure of 220 bar. The effects of draw ratio, scCO2 exposure, and tension on structural changes and on mechanical properties in particular were investigated using differential scanning calorimetry, tensile deformation, and birefringence and density measurements. A good correlation was obtained among the results obtained from various techniques. Results indicate that exposure to scCO2 not only induces structural changes but also develops crystallization in the samples. Tension under scCO2 exposure also produces significant effects in terms of causing structural changes and transforming the oriented chains in the mesophase into the crystalline or noncrystalline domains. PET fibers exposed to scCO2 under no tension yields lower values of crystallinity, orientation, tenacity, and Young’s modulus but higher values of breaking elongation compared to samples exposed under tension. This is an indication of higher plasticity of the chains in the amorphous domains in samples exposed under no tension. It is also found that mechanical measurements confirm the structural changes taking place in exposed PET samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号