首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is believed that fossil fuel sources are exhaustible and also the major cause of greenhouse gas emission. Therefore, it is required to increase the portion of renewable energy sources in supplying the primary energy of the world. In this study, it is focused on application of nanotechnology in exploitation of renewable energy sources and the related technologies such as hydrogen production, solar cell, geothermal, and biofuel. Here, nanotechnologies influence on providing an alternative energy sources, which are environmentally benign, are comprehensively discussed and reviewed. Based on the literature, employing nanotechnology enhances the heat transfer rate in photovoltaic/thermal (PV/T) systems and modifies PV structures, which can improve its performance, making fuel cells much cost‐effective and improving the performance of biofuel industry through utilization of nanocatalysts, manufacturing materials with high durability and lower weight for wind energy industry.  相似文献   

2.
The volatility of fossil fuel and their increased consumption have exacerbated the socio-economic dilemma along with electricity expenses in third world countries around the world, Pakistan in particular. In this research, we study the output of renewable hydrogen from natural sources like wind, solar, biomass, and geothermal power. It also provides rules and procedures in an attempt to determine the current situation of Pakistan regarding the workability of upcoming renewable energy plans. To achieve this, four main criteria were assessed and they are economic, commercial, environmental, and social adoption. The method used in this research is the Fuzzy Analytical Hierarchical Process (FAHP), where we used first-order engineering equations, and Levelized cost electricity to produce renewable hydrogen. The value of renewable hydrogen is also evaluated. The results of the study indicate that wind is the best option in Pakistan for manufacturing renewable based on four criteria. Biomass is found to be the most viable raw material for the establishment of the hydrogen supply network in Pakistan, which can generate 6.6 million tons of hydrogen per year, next is photovoltaic solar energy, which has the capability of generating 2.8 million tons. Another significant finding is that solar energy is the second-best candidate for hydrogen production taking into consideration its low-cost installation and production. The study shows that the cost of using hydrogen in Pakistan ranges from $5.30/kg to $5.80/kg, making it a competitive fuel for electric machines. Such projects for producing renewable power must be highlighted and carried out in Pakistan and this will lead to more energy security for Pakistan, less use of fossil fuels, and effective reduction of greenhouse gas emissions.  相似文献   

3.
There is a constant growth in energy consumption and consequently energy generation around the world. During the recent decades, renewable energy sources took heed of scientists and policy makers as a remedy for substituting traditional sources. Wind and photovoltaic (PV) are the least reliable sources because of their dependence on wind speed and irradiance and therefore their intermittent nature. Energy storage systems are usually coupled with these sources to increase the reliability of the hybrid system. Environmental effects are one of the biggest concerns associated with the renewable energy sources. This study summarizes the last and most important environmental and economic analysis of a grid‐connected hybrid network consisting of wind turbine, PV panels, and energy storage systems. Focusing on environmental aspects, this paper reviews land efficiency, shaded analysis of wind turbines and PV panels, greenhouse gas emission, wastes of wind turbine and PV panels' components, fossil fuel consumption, wildlife, sensitive ecosystems, health benefits, and so on. A cost analysis of the energy generated by a hybrid system has been discussed. Furthermore, this study reviews the latest technologies for materials that have been used for solar PV manufacturing. This paper can help to make a right decision considering all aspects of installing a hybrid system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation.  相似文献   

5.
Hydrogen technologies driven by renewable energy sources (RES) represent an attractive energy solution to ensure environmental sustainability. In this paper, a decision support system for the hydrogen exploitation is presented, focusing on some specific planning aspects. In particular, the planning aspects regard the selection of locations with high hydrogen production mainly based on the use of solar and wind energy sources. Four modules were considered namely, the evaluation of the wind and solar potentials, the analysis of the hydrogen potential, the development of a regional decision support module and a last module that regards the modelling of a hybrid onsite hydrogen production system. The overall approach was applied to a specific case study in Liguria region, in the north of Italy.  相似文献   

6.
The economic, social, and environmental aspects are important that should be notable before the selection of a method for the production of energy. Various renewable energy sources are used like hydropower, biomass, biofuel, geothermal energy, and wind energy for the production of sustainable energy that are excellent approaches to fulfill energy environmental energy demands. Renewable sources of energy give an excellent chance to extenuate the gas emission in greenhouse and reduction of global warming with the help of renewable sources of energy. The importance and utilization of the variety of renewable sources of energy are elaborated in this article. The emerging and exploring technique for the production of energy is the photocatalysis. In photocatalysis, solar spectrum is the extraneous source that is used with water to produce hydrogen energy (green energy) by the water splitting under the shower of the solar spectrum. The solar spectrum contains heat and intensity of light from which light spectrum is the abundantly used for the splitting of water. The photocatalyst is the key factor to initiate the reaction depending upon the energy band gap by absorbing the energy from the spectrum of the sun. Semiconducting materials having lower forbidden energy band gap are the basic requirements to use them as a photocatalyst for photocatalysis. Copper vanadate and their composites are the promising materials that are used as photocatalyst for the production of hydrogen energy. Copper vanadate is the focusing material that can be used as photocatalyst. It is an n‐type semiconducting material with 2 eV indirect energy band gap having monoclinic structural phase which is tuned by the doping of metals like chromium, molybdenum, and silver to reduce the grain size and energy band gap and increase the surface area and optical absorption of solar light only to enhance the photocatalytic performance towards the production of hydrogen energy by water splitting in the presence of solar light.  相似文献   

7.
The urbanization and increase in the human population has significantly influenced the global energy demands. The utilization of non-renewable fossil fuel-based energy infrastructure involves air pollution, global warming due to CO2 emissions, greenhouse gas emissions, acid rains, diminishing energy resources, and environmental degradation leading to climate change due to global warming. These factors demand the exploration of alternative energy sources based on renewable sources. Hydrogen, an efficient energy carrier, has emerged as an alternative fuel to meet energy demands and green hydrogen production with zero carbon emission has gained scientific attraction in recent years. This review is focused on the production of hydrogen from renewable sources such as biomass, solar, wind, geothermal, and algae and conventional non-renewable sources including natural gas, coal, nuclear and thermochemical processes. Moreover, the cost analysis for hydrogen production from each source of energy is discussed. Finally, the impact of these hydrogen production processes on the environment and their implications are summarized.  相似文献   

8.
This paper presents a simulation model for an energy hub consisting of natural gas (NG) turbines as the main sources of energy (including both electricity and heat) and two renewable energy sources—wind turbines (WTs) and photovoltaic (PV) solar cells. The hub also includes water electrolyzers for hydrogen production. The hydrogen serves as an energy storage medium that can be used in some transportation applications, or it can be mixed with the NG feed stream to improve the emission profile of the gas‐turbine unit. The capacity of the designed hub is meant to simulate and replace the coal‐fired Nanticoke Generating Station with a NG‐fired power plant. Therefore, the aim of this work is to develop a simulated model that combines different energy generation technologies, which are evaluated in terms of the total energy produced, the cost per kWh of energy generated, and the amount of emissions produced. The proposed model investigates the benefits, both economic and environmental, the technological barriers, and the challenges of energy hubs by developing several scenarios. The simulation of these scenarios was done using General Algebraic Modeling System (GAMS®). Although the software is strongly known for its optimization capability, the mixed complementary problems solver makes it a strong tool for solving equilibrium problems. Excess energy produced during off‐peak demand by WTs and PV solar cells was used to feed the electrolyzer to produce H2 and O2. The proposed approach shows that a significant reduction in energy cost and greenhouse gas emissions were achieved, in addition to the increased overall efficiency of the energy hub. Out of the examined three scenarios, Scenario C appeared to be the most feasible option for a combination of renewable and non‐renewable technologies as it did not only produce hydrogen, but also provided electricity at relatively lower prices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation.  相似文献   

10.
This paper focuses on clean energy solutions in order to achieve better sustainability, and hence discusses opportunities and challenges from various dimensions, including social, economic, energetic and environmental aspects. It also evaluates the current and potential states and applications of possible clean‐energy systems. In the first part of this study, renewable and nuclear energy sources are comparatively assessed and ranked based on their outputs. By ranking energy sources based on technical, economic, and environmental performance criteria, it is aimed to identify the improvement potential for each option considered. The results show that in power generation, nuclear has the highest (7.06/10) and solar photovoltaic (PV) has the lowest (2.30/10). When nonair pollution criteria, such as land use, water contamination, and waste issues are considered, the power generation ranking changes, and geothermal has the best (7.23/10) and biomass has the lowest performance (3.72/10). When heating and cooling modes are considered as useful outputs, geothermal and biomass have approximately the same technical, environmental, and cost performances (as 4.9/10), and solar has the lowest ranking (2/10). Among hydrogen production energy sources, nuclear gives the highest (6.5/10) and biomass provides the lowest (3.6/10) in ranking. In the second part of the present study, multigeneration systems are introduced, and their potential benefits are discussed along with the recent studies in the literature. It is shown that numerous advantages are offered by renewable energy‐based integrated systems with multiple outputs, especially in reducing overall energy demand, system cost and emissions while significantly improving overall efficiencies and hence output generation rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.

In this work, renewable energy facilities of Turkey were investigated. Electricity is mainly produced by thermal power plants, consuming coal, lignite, natural gas, fuel oil and geothermal energy, and hydro power plants in Turkey. Turkey has no large oil and gas reserves. The main indigenous energy resources are lignite, hydro and biomass. Turkey has to adopt new, long-term energy strategies to reduce the share of fossil fuels in primary energy consumption. For these reasons, the development and use of renewable energy sources and technologies are increasingly becoming vital for sustainable economic development of Turkey. The most significant developments in renewable production are observed hydropower and geothermal energy production. Renewable electricity facilities mainly include electricity from biomass, hydropower, geothermal, and wind and solar energy sources. Biomass cogeneration is a promising method for production bioelectricity.  相似文献   

12.
Hydrogen energy can play a pivotal part in enhancing energy security and decreasing hazardous emissions in Pakistan. However, hydrogen energy can be sustainable and clean only if it is produced from renewable energy sources (RES). Therefore, this study conducts feasibility of six RES for the generation of hydrogen in Pakistan. RES evaluated in this study include wind, solar, biomass, municipal solid waste (MSW), geothermal, and micro-hydro. RES have been evaluated using Fuzzy Delphi, fuzzy analytical hierarchy process (FAHP), and environmental data envelopment analysis (DEA). Fuzzy Delphi finalizes criteria and sub-criteria. FAHP obtains relative weights of criteria considered for choosing the optimal RES. Environmental DEA measures relative efficiency of each RES using criteria weights as outputs, and RES-based electricity generation cost as input. The results revealed wind as the most efficient source of hydrogen production in Pakistan. Micro-hydro and Solar energy can also be used for hydrogen production. Biomass, MSW, and geothermal achieved less efficiency scores and therefore are not suggested at present.  相似文献   

13.
To achieve a national energy access target of 90% urban and 51% rural by 2035, combat climate change, and diversify the energy sector in the country, the Zambian government is planning to integrate other renewable energy resources (RESs) such as wind, solar, biomass, and geothermal into the existing hydro generation–based power system. However, to achieve such targets, it is essential for the government to identify suitable combination of the RESs (electricity generation fuel mix) that can provide the greatest sustainability benefit to the country. In this paper, a multicriteria decision-making framework based on analytic hierarchy process and system dynamics techniques is proposed to evaluate and identify the best electricity generation fuel mix for Zambia. The renewable energy generation technologies considered include wind, solar photovoltaic, biomass, and hydropower. The criteria used are categorized as technical, economic, environmental, social, and political. The proposed approach was applied to rank the electricity generation fuel mix based on nine sustainability aspects: land use, CO2 emissions, job creation, policy promotion affordability, subsidy cost, air pollution reduction, RES electricity production, RES cumulative capacity, and RES initial capital cost. The results indicate that based on availability of RESs and sustainability aspects, in overall, the best future electricity generation mix option for Zambia is scenario with higher hydropower (40%) penetration, wind (30%), solar (20%), and lower biomass (10%) penetration in the overall electricity generation fuel mix, which is mainly due to environmental issues and availability of primary energy resources. The results further indicate that solar ranks first in most of the scenarios even after the penetration weights of RES are adjusted in the sensitivity analysis. The wind was ranked second in most of the scenarios followed by hydropower and last was biomass. These developed electricity generation fuel mix pathways would enable the country meeting the future electricity generation needs target at minimized environmental and social impacts by 2035. Therefore, this study is essential to assist in policy and decision making including planning at strategic level for sustainable energy diversification.  相似文献   

14.
Renewable energy represents an area of tremendous opportunity for India. Energy is considered a prime agent in the generation of wealth and a significant factor in economic development. Energy is also essential for improving the quality of life. Development of conventional forms of energy for meeting the growing energy needs of society at a reasonable cost is the responsibility of the Government. Limited fossil resources and associated environmental problems have emphasized the need for new sustainable energy supply options. India depends heavily on coal and oil for meeting its energy demand which contributes to smog, acid rain and greenhouse gases’ emission. Last 25 years has been a period of intense activities related to research, development, production and distribution of energy in India.Though major energy sources for electrical power are coal and natural gas, development and promotion of non-conventional sources of energy such as solar, wind and bio-energy, are also getting sustained attention. The use of electricity has grown since it can be used in variety of applications as well as it can be easily transmitted, the uses of renewable energy like wind and solar is rising. Wind energy is a clean, eco-friendly, renewable resource and is nonpolluting. The gross wind power potential is estimated at around 48,561 MW in the country; a capacity of 14,989.89 MW up to 31st August 2011 has so far been added through wind, which places India in the fifth position globally. This paper discusses the ways in which India has already supported the growth of renewable energy technologies i.e. wind energy and its potential to expand their contribution to world growth in a way that is consistent with world's developmental and environmental goals. The paper presents current status, major achievements and future aspects of wind energy in India.  相似文献   

15.
The penetration of renewable energy sources is expected to rapidly increase from 15% to 50% in 2050 due to their vital contribution to the global energy requirements, sustainability and quality of life in economical, environmental and health aspects. This huge rise highlights the necessity of development of energy storage systems, especially for intermittency renewable energies such as solar photovoltaic and wind turbine, in order to balance the energy network. In this study, renewable energy options including pumped hydro, pressurized air, flywheels, Li ion batteries, hydrogen and super-capacitors are compared based on a specific set of criteria. The criteria considered are energy/power density, ease of integration with the existing energy network, cost effectiveness, durability, efficiency and safety. Our study showed that storing renewable energy sources in the form of hydrogen through the electrolysis process is ranked as the most promising option considering the mentioned criteria. It brings about several benefits suggesting that hydrogen and fuel cells are promising contributors towards a more sustainable future, both in energy demand and environmental sustainability.  相似文献   

16.
This study elucidates the competition among renewable and nuclear energy sources for the production of hydrogen. These involve the use of solar, wind, biological process, tidal, geothermal and nuclear power to generate hydrogen. A comprehensive economic model, the Taiwan General Equilibrium Model-Clean Energy (TAIGEM-CE) model, is used for forecasting. Based on certain assumptions, the analytical results reveal that the most promising means of generating hydrogen is using wind power. Geothermal power is the most sensitive to external investment as a source of power for producing hydrogen. Solar hydrogen also benefits greatly from investment. Production of biohydrogen will be favorable without external investment, and they are less sensitive to investment than other renewable energy sources. Based on the assumptions made in this study, nuclear energy is not as competitive as most renewable energy sources for hydrogen production.  相似文献   

17.
The environmental pollution and diminishing conventional fuel sources and global warming problems make it more attractive for considering renewables as alternative energy sources, such as solar, wind and micro hydro, etc. Recent advances in hydrogen and fuel cell technologies further facilitate these energy options to supply electrical power to various communities. Hydrogen fuel cell systems coupled with renewable energy sources stand out as a promising solution. This paper presents an integrated system framework for fuel cell-based distributed energy applications. Five components are included in this framework: a physical energy system application, a virtual simulation model, a distributed coordination and control, a human system interface and a database. The integrated system framework provides a means to optimize system design, evaluate its performance and balance supplies and demands in a hydrogen assisted renewable energy application. It can either be applied to a distributed energy node that fulfills a local energy demand or to an energy-network that coordinates distributed energy nodes in a region, such as a hydrogen highway. The proposed system framework has been applied in the first phase of our multi-phases project to investigate and analyze the feasibility and suitability of hydrogen fuel assisted renewable power for a remote community. Through integration with an available renewable energy profile database, the developed system efficiently assists in selecting, integrating, and evaluating different system configurations and various operational scenarios at the application site. The simulation results provide a solid basis for the next phase of our demonstration projects.  相似文献   

18.
This review presents the power-to-gas concept, particularly with hydrogen, from renewable energy sources to end-use applications in various sectors, ranging from transportation to natural gas distribution networks. The paper includes an overview of the leading related studies for comparative evaluation. Due to the intermittent/fluctuating phenomena of most renewables, power-to-hydrogen appears to be a promising option to offset any mismatch between demand and supply. It is a novel concept to increase the renewability of fuels and reach a sustainable energy system for future transportation, power and thermal process sectors. Comparisons of different hydrogen production methods fed by several energy sources are made regarding environmental impact, cost and efficiency. The present results show that hydrogen production (with power-to-hydrogen concept) via polymer electrolyte membrane electrolyser has lower environmental effects than other traditional methods, such as coal gasification and reforming and steam methane reforming. The geothermal energy-based system has the lowest levelized cost of electricity during hydrogen production, while natural gas has the highest value. The best option for the plant efficiency is found for high-temperature steam electrolysis fed from biogas, while the lowest efficiency value belongs to polymer electrolyte membrane electrolyser driven by solar photovoltaics, respectively.  相似文献   

19.
Due to the environmental concerns caused by fossil fuels, renewable energy systems came into consideration. In this study, a renewable hybrid system based on ocean thermal, solar and wind energy sources were designed for power generation and hydrogen production. To analyze the system, a techno-economic model was exerted in order to calculate the exergy efficiency as well as the cost rate and the hydrogen production. The main parameters that affect the system performance were identified, and the impact of each parameter on the main outputs of the system was analyzed as well. The thermo-economic analysis showed that the most effective parameters on the exergy efficiency and total cost rate are the wind speed and solar collector area, respectively. To reach the optimum performance of the system, multi-objective optimization, by using genetic algorithm, was applied. The optimization was divided into two separate case studies; in case A, the cost rate and the exergy efficiency were considered as two objective functions; and in case B, the cost rate and the hydrogen production were assigned as two other objective functions. The optimization results of the case A showed that for the total cost rate of 30.5 $/h, the exergy efficiency could achieve 35.57%. While, the optimization of the case B showed that for the total cost rate of 28.06 $/h, the hydrogen production rate could reach 5.104 kg/h. Furthermore, after optimizing, an improvement in exergy efficiency was obtained, approximately 19%.  相似文献   

20.
Hydrogen is a clean, renewable secondary energy source. The development of hydrogen energy is a common goal pursued by many countries to combat the current global warming trend. This paper provides an overview of various technologies for hydrogen production from renewable and non-renewable resources, including fossil fuel or biomass-based hydrogen production, microbial hydrogen production, electrolysis and thermolysis of water and thermochemical cycles. The current status of development, recent advances and challenges of different hydrogen production technologies are also reviewed. Finally, we compared different hydrogen production methods in terms of cost and life cycle environmental impact assessment. The current mainstream approach is to obtain hydrogen from natural gas and coal, although their environmental impact is significant. Electrolysis and thermochemical cycle methods coupled with new energy sources show considerable potential for development in terms of economics and environmental friendliness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号