首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methodology to improve the performance of a hybrid solid oxide fuel cell gas turbine (SOFC‐GT) system for the whole operating range is proposed. The method suggests a way to estimate the geometric parameters of the turbomachinery components for a hybrid SOFC‐GT system. It is based on the search of the compressor and turbine operating lines giving the optimum system efficiency both in design and part load operation. Turbomachinery models are used to calculate the geometry that produces the desired performance maps and the corresponding operating lines. Based on the new turbomachinery design, the hybrid system shows a clear efficiency advantage for the whole operating range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Compressed air energy storage (CAES) is promising to enable large‐scale penetration of renewable energies (REs). However, conventional diabatic CAES (D‐CAES) depends largely on fossil fuels, while adiabatic CAES (A‐CAES) is limited in output power. To conquer these disadvantages, concept of combined heat and CAES (CH‐CAES) is proposed in this paper. The proposed system couples an electric heater with conventional A‐CAES. During charging, electricity storage transforms from pure compression to partly relying on Joule heating. The stored heat in an electric heater will be used to boost turbine inlet temperature during discharging. Consequently, system charge/discharge capacity can be improved without enlarging cavern size, raising cavern pressure, and producing greenhouse gases. This paper discusses three types of CH‐CAES systems with different electric heater installation positions. Off‐design performance analysis for each system is conducted on the basis of turbomachinery (compressors, turbines, and the pump) characteristic maps and heat exchangers off‐design models. Performance comparison is conducted between these three CH‐CAES systems (called Mode II, III, and IV for simplification) and the conventional A‐CAES system (Mode I). Control strategies are also given in this paper. Results show that the EVR (energy generated per unit volume of storage) increases with participation of an electric heater, while the RTE (system roundtrip efficiency) slightly decreases. Mode I has the highest RTE. The largest EVR appears in Mode III where the electrical heater is in series with the intercooler and after cooler. Mode II is a compromise solution to achieve both relatively high RET and EVR when the electrical heater is installed in series only with the intercooler. Mode IV with a paralleling electrical heater has great flexibility to adapt different user demands. The integration of the ORC has a positive effect on system RTE and EVR.  相似文献   

3.
In the context of the rapid development of large-scale renewable energy, large-scale energy storage technology is widely considered as the most effective means of improving the quality and security of electricity. In the existing energy storage technology, advanced adiabatic compressed air energy storage (AA-CAES) technology has broad application prospects because of its advantages of low pollution, low investment, flexible site selection, and large capacity. However, the lack of an in-depth understanding of the dynamic characteristics of CAES systems has severely limited the development of system design and control strategy, resulting in a lack of commercial operation of large-scale CAES systems. This paper describes the design and implementation of a CAES plant and its controller for applications in the distribution network level. The dynamic mathematical models of AA-CAES were established and a feasible control strategy for the grid-connected process was developed to analyze the dynamic characteristics of the system in the discharge stage. The work done in this study provided a data reference for the deep understanding of the dynamic characteristics of AA-CAES, system design, and control strategy in the industry.  相似文献   

4.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Integrating variable renewable energy from wind farms into power grids presents challenges for system operation, control, and stability due to the intermittent nature of wind power. One of the most promising solutions is the use of compressed air energy storage (CAES). The main purpose of this paper is to examine the technical and economic potential for use of CAES systems in the grid integration. To carry out this study, 2 CAES plant configurations: adiabatic CAES (A‐CAES) and diabatic CAES (D‐CAES) were modelled and simulated by using the process simulation software ECLIPSE. The nominal compression and power generation of both systems were given at 100 and 140 MWe, respectively. Technical results showed that the overall energy efficiency of the A‐CAES was 65.6%, considerably better than that of the D‐CAES at 54.2%. However, it could be seen in the economic analysis that the breakeven electricity selling price (BESP) of the A‐CAES system was much higher than that of the D‐CAES system at €144/MWh and €91/MWh, respectively. In order to compete with large‐scale fossil fuel power plants, we found that a CO2 taxation scheme (with an assumed CO2‐tax of €20/tonne) improved the economic performance of both CAES systems significantly. This advantage is maximised if the CAES systems use low carbon electricity during its compression cycle, either through access to special tariffs at times of low carbon intensity on the grid, or by direct coupling to a clean energy source, for example a 100‐MW class wind farm.  相似文献   

6.
This study evaluates large‐scale low‐grade energy recovery (LS‐LGER) from a conventional coal‐fired Rankine cycle (RC) as a ‘green’ option to offsetting the cost of treating pollution. An energy and exergy analysis of a reference generating station isolates the key areas for investigation into LS‐LGER. This is followed by a second law analysis and a detailed optimization study for a revised RC configuration, which provides a conservative estimate of the possible energy recovery. Cycle optimization based on specific power output, and including compact heat exchanger designs, indicates plant efficiency improvements (with high‐capacity equipment) of approximately 2 percentage points with reduced environmental impact. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Three classes of double‐effect lithium bromide–water absorption refrigeration systems (series, parallel and reverse parallel) with identical refrigeration capacities are studied and compared thermodynamically. In order to simulate the performances of the systems, a new set of computationally efficient formulations is used for thermodynamic properties of Li‐Br solutions at equilibrium. The simulation results are used to examine the influence of various operating parameters on the first and second law performance characteristics of the systems. In addition, the dependences are investigated of system performance on the effectivenesses of the solution heat exchangers, the pressure drops between the evaporator and the absorber and between the low‐pressure generator and the condenser, and the low‐grade heat externally supplied to the low‐pressure generator. The results reveal the advantages and disadvantages of different configurations of double‐effect lithium bromide–water absorption refrigeration systems, and are expected to be useful in the design and control of such systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a methodology of a design optimization technique that can be useful in assessing the best configuration of a finned‐tube evaporator, using a thermoeconomic approach. The assessment has been carried out on a direct expansion finned‐tube evaporator of a vapor compression cycle for a roof‐top bus air‐conditioning (AC) system at a specified cooling capacity. The methodology has been conducted by studying the effect of some operational and geometrical design parameters for the evaporator on the entire cycle exergy destruction or irreversibility, AC system coefficient of performance (COP), and total annual cost. The heat exchangers for the bus AC system are featured by a very compact frontal area due to the stringent space limitations and structure standard for the system installation. Therefore, the current study also takes in its account the effect of the variation of the design parameters on the evaporator frontal area. The irreversibility due to heat transfer across the stream‐to‐stream temperature difference and due to frictional pressure drops is calculated as a function of the design parameters. A cost function is introduced, defined as the sum of two contributions, the investment expense of the evaporator material and the system compressor, and the operational expense of AC system that is usually driven by an auxiliary engine or coupled with the main bus engine. The optimal trade‐off between investment and operating cost is, therefore, investigated. A numerical example is discussed, in which a comparison between the commercial evaporator design and optimal design configuration has been presented in terms of the system COP and evaporator material cost. The results show that a significant improvement can be obtained for the optimal evaporator design compared with that of the commercial finned‐tube evaporator that is designed based on the conventional values of the design parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The performance of a vapour compression system that uses an ejector as an expansion device was investigated. In the analysis, a two‐phase constant area ejector flow model was used. R134a was selected as the refrigerant. According to the obtained results, for any operating temperature there are different optimum values of pressure drop in the suction chamber, ejector area ratio, ejector outlet pressure and cooling coefficient of performance (COP). As the difference between condenser and evaporator temperatures increases, the improvement ratio in COP rises whereas ejector area ratio drops. The minimum COP improvement ratio in the investigated field was 10.1%, while its maximum was 22.34%. Even in the case of an off‐design operation, the performance of a system with ejector is higher than that of the basic system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper we present work involving the processing of climatic data relating to some Italian cities, taken from a set of data known as European ‘test reference year’ (TRY). We aim to make a critical comparison of the thermohygrometric conditions of outdoor air in the summer season thus obtained with those design conditions as laid down by Italian regulations (UNI 10339) and with those recently suggested by ASHRAE. Subsequently, and with reference to some traditional and recent applications in the field of air‐conditioning, we report on how performance differs according to outdoor summer thermohygrometric design conditions, such as those indicated by UNI 10339, by ASHRAE and by the processing of TRY data. Finally, we discuss the optimal choice of design conditions according to the type of application. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
An Erratum has been published for this article in International Journal of Energy Research 2004; 28 (13): 1213. This paper deals with the simulation of thermal energy storage (TES) system for HVAC applications. TES is considered to be one of the most preferred demand side management technologies for shifting cooling electrical demand from peak daytime hours to off peak night hours. TES is incorporated into the conventional HVAC system to store cooling capacity by chilling ethylene glycol, which is used as a storage medium. The thermodynamic performance is assessed using exergy and energy analyses. The effects of various parameters such as ambient temperature, cooling load, and mass of storage are studied on the performance of the TES. A full storage cycle, with charging, storing and discharging stages, is considered. In addition, energy and exergy analysis of the TES is carried out for system design and optimization. The temperature in the storage is found to be as low as 6.4°C after 1 day of charging without load for a mass of 250 000 kg. It is found that COP of the HVAC system increases with the decrease of storage temperature. Energy efficiency of the TES is found to be 80% for all the mass flow rate of the discharging fluid, whereas exergy efficiency varies from 14 to 0.5%. This is in fact due to the irreversibilities in a TES process destroy a significant amount of the input exergy, and the TES exergy efficiencies therefore become always lower than the corresponding energy efficiencies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper reports the thermodynamic optimization of air conditioning systems with one or more evaporators, for one or more rooms. First, the paper shows that the minimization of the total power requirement leads to the same results as the minimization of entropy generation in the whole system, which includes the insulation between the cold space and the ambient. The results also show that there is a trade‐off between the power lost by fluid friction in the distribution network and the power required by the refrigerant. This trade‐off determines the optimal allocation of hardware in the installation. The optimum diameters of the refrigerant pipelines are independent of their lengths. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Radial inflow turbine is one of the crucial components of organic Rankine cycle (ORC) system, which has great impact on the performance of system. R245fa was selected as the working fluid to recycle the waste heat source with a temperature of 350 to 400 K. The genetic algorithm (GA) was employed in thermodynamic design to optimize the 10 key design parameters, which are needed in aerodynamic design of the ORC turbine. Isotropic efficiency was the fitness function of 10 key variables in GA. The three‐dimensional geometry model was built based on the thermodynamic and aerodynamic design and then was imported into the commercial software ANSYS‐CFX to conduct viscous numerical simulation. Based on the three‐dimensional simulation, the off‐design performance in different mass flow rate, static inlet temperature coupled with different rotational speed was investigated respectively. The results show that at design condition, the maximum efficiency deviation is only 2.5% with the rotational speed variations among the range of 10%, so the radial inflow turbine designed in this research possesses great off‐design performance.  相似文献   

14.
Pumps are a type of general machine with many varieties and extensive application. To simulate really the self‐priming process of multistage self‐priming centrifugal pump, the numerical calculation of gas‐water two‐phase flow on a four‐stage self‐priming pump was performed based on ANSYS CFX software. Moreover, a transparent plastic tube was installed at the pump outlet, and the photographic technology was used to observe the appearance of gas‐water escape during the self‐priming process of multistage self‐priming centrifugal pump. The experimental results were compared with the numerical results. It is found that the whole self‐priming process of self‐priming pump can be divided into three stages: the initial self‐priming stage, the middle self‐priming stage, and the final self‐priming stage. Moreover, the self‐priming time of the initial and final self‐priming stages accounts for a small percentage of the whole self‐priming process, while the middle self‐priming stage is the main stage in the self‐priming process, which determines the length of self‐priming time. The experimental results are very close to the numerical results in the initial and middle self‐priming stages.  相似文献   

15.
Artificial neural network (ANN) is applied for exergy analysis of a direct expansion solar‐assisted heat pump (DXSAHP) in the present study. The experiments were conducted in a DXSAHP under the meteorological conditions of Calicut city in India. An ANN model was developed based on backpropagation learning algorithm for predicting the exergy destruction and exergy efficiency of each component of the system at different ambient conditions (ambient temperature and solar intensity). The experimental data acquired are used for training the network. The results showed that the network yields a maximum correlation coefficient with minimum coefficient of variance and root mean square values. The results confirmed that the use of an ANN analysis for the exergy evolution of DXSAHP is quite suitable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
设备容量优化和运行策略优化是分布式能源系统设计,运行的关键问题。为实现分布式能源系统的经济效益,能效水平和环境效益最大化,针对楼宇型分布式能源系统建立了相对普适化的物理模型和数学模型,以粒子群优化算法和线性规划相结合,采用两阶段优化方法计算系统的最优容量配置,并给出运行策略。以某写字楼的分布式能源系统为例,得到最优的系统设备容量和全年逐时运行策略,并采用遍历法验证计算结果的准确性。优化的分布式能源系统与传统供能系统相比,费用年值降低7.79%,年总能耗降低24.18%,污染物排放量减少了62.77 %。  相似文献   

17.
In this paper, we evaluate and quantify the energy losses associated with compressed‐air systems, and their costs to manufacturers. We also show how to reduce the cost of compressed air in existing facilities by making some modifications with attractive payback periods. Among the measures, we investigate to reduce the compressed air are: (1) repairing air leaks, (2) installing high‐efficiency motors, (3) reducing the average air inlet temperature by using outside air (4) reducing compressor air pressure. We also illustrate the potential saving associated with each measure by using realistic examples. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, three kinds of natural gas‐based power generation processes for CO2 capture and storage, that is, natural gas‐combined cycle with pre‐combustion decarburization (NGCC‐PRE), NGCC‐PRE with calcium‐looping process, and NGCC‐PRE with chemical‐looping combustion (NGCC‐CLC), are analyzed by Aspen Plus. The effects of two decisive variables (i.e., steam‐to‐natural gas (S/NG) ratio and oxygen‐to‐natural gas (O/NG) ratio) on the thermodynamic performances of individual process, such as energy and exergy efficiencies, are investigated systematically. Based on simulation outcomes, all the three processes are favored by operating at S/NG = 2.0 and O/NG = 0.65. Furthermore, comparisons of individual system efficiencies and exergy destruction contributor are herein involved. The results show that the highest system efficiencies and lowest exergy destruction are achieved in the NGCC‐CLC process. In addition, capital investment, dynamic payback period, net present value, and internal rate of return are used for deciding the economic feasibility and surely are involved in this work for comparison purpose. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Economic, environmental and social pressures have increased the need for business organisations to control and manage their energy performance on a continual basis. Responding to these pressures follows a learning curve that is influenced by changing drivers and barriers. Consequently, different energy management factors have different development priorities over time. This paper explores the development priority of one factor, namely, energy performance measurement, in the energy‐intensive industrial sector, which is the most advanced industrial sector in its energy management learning curve. In addition, the paper identifies the research and development needs of energy performance measurement that are required to further improve energy performance. The results are based on interviews carried out with managers and operators in three energy‐intensive industrial sectors in Finland. Energy performance measurement is found to be the third development priority in energy management, behind resource and commitment issues. This represents a paradox as resources and commitment are prerequisites for energy performance measurement to be developed, whereas energy performance measurement influences the very same issues by enforcing changed behaviour. Several deficiencies are identified in energy performance measurement in the temporal, systemic and organisational dimensions. Research should be continued towards the implementation of energy performance measurement as a process, the integration of energy performance metrics into overall management and the development of metrics for different industrial sectors, companies and operating cultures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The main driving forces behind the efforts to utilize various sources of renewable energy, energy efficiency, and reducing energy waste are the increasing level of greenhouse gasses and the climb in fuel prices. Energy storage is now gaining continuously increasing importance. It develops new sources of energy. The storage of energy in a suitable form, which can be converted into the required form, is a high challenge. Energy storage not only reduces the mismatch between supply and demand but it also improves the performance and reliability of energy system and contributes toward conserving energy. In this work, some research works carried out by the author and associates over the last 10 years are reviewed along with some other relevant works. These articles cover different systems involving energy sustainability, energy efficiency, green energy, and power augmentation related to compressed air energy storage, with and without humidification, plus with and without cooling (adiabatic). Comparison of the potential methods shows that compressed air storage with humidification is superior to other methods in energy ratio and primary energy efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号