首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In polymer electrolyte fuel cell operation, a decrease in the proton conductivity of the membrane at reduced humidity is a main cause for poor cell performance at high temperature. To alleviate the dehydration of the membrane at high temperature, sulfonated mesoporous benzene-silica (sMBS) particles are embedded in sulfonated poly(ether ether ketone) (sPEEK) membranes. As the sMBS itself is highly sulfonated on both organic and inorganic moieties, the proton conductivity of composite membranes is much higher than that of the pristine sPEEK membrane, and it reaches that of Nafion 117 at a high relative humidity (RH) of 90%. The dehydration rate of the membrane is reduced significantly by the capillary condensation effect of sMBS particles with the nanometer-scale 2-D hexagonal cylindrical pores, and the proton conductivity of the composite membranes, 0.234 × 10−1 S cm−1, is much higher than that of pristine sPEEK membrane, 0.59 × 10−3 S cm−1, at a relatively low humidity of 40% RH. This maintenance of high conductivity at low humidity is attributed to the high water-holding capacity of the sMBS proton conductors. The sMBS-embedded sPEEK composite membranes show a much lower methanol permeability of 2–5 × 10−7 cm2 s−1 compared to that of Nafion 117, which is 1.6 × 10−6 cm2 s−1 at room temperature.  相似文献   

2.
The goal of the present work is to introduce a new aromatic bulky six-membered sulfo-napthalimide pendant groups, specifically 2-(2,5-dicarb-oxyphenyl-1,3-dioxo- 2,3-didihydro-1Hbenzo[de]isoquinoline-6-sulfonate (PDDDBIS), into the poly(oxybenzimidazole) (POBI) main chain. As no sulfo-napthalimide-bearing POBI has been reported yet, this could be a potential strategy to improve the solubility, processability, and proton conductivity of sulfonated POBIs in addition to boosting fuel cell performance. Out of six membranes synthesized, one sulfonated POBI membrane with pendant PDDDBIS groups (SPOBI-100) exhibited a fairly high proton conductivity of 0.172 S/cm, which is higher than Nafion-117 (0.161 S/cm) at 90 °C. Notably, an H2/O2 PEM fuel cell fabricated with the SPOBI-100 membrane displayed good performance with the maximum peak power density of 547 mW/cm2 and output current density of 1259 mA/cm2 in 0.99 V at 90 °C with100% RH, which is higher than the Nafion 117 power density (519 mW/cm2) and current density (1215 mA/cm2) under the same testing conditions.  相似文献   

3.
A type of sulfonated covalent organic framework nanosheets (TpPa-SO3H) was synthesized via interfacial polymerization and incorporated into sulfonated poly (ether ether ketone) (SPEEK) matrix to prepare proton exchange membranes (PEMs). The densely and orderly arranged sulfonic acid groups in the rigid skeleton of the TpPa-SO3H nanosheets, together with their high-aspect-ratio and well-defined porous structure provide proton-conducting highways in the membrane. The doping of TpPa-SO3H nanosheets led to an increased ion exchange capacity up to 2.34 mmol g?1 but a 2-folds reduced swelling ratio, remarkably mitigating the trade-off between high IEC and excessive swelling ratio. Based on the high IEC and orderly arranged proton-conducting sites, the SPEEK/TpPa–SO3H–5 membrane exhibited the maximum proton conductivity of 0.346 S cm?1 at 80 °C, 1.91-folds higher than the pristine SPEEK membrane. The mechanical strength of the composite membrane was also improved by 2.05-folds–74.5 MPa. The single H2/O2 fuel cell using the SPEEK/TpPa–SO3H–5 membrane presented favorable performance with an open voltage of 1.01 V and a power density of 86.54 mW cm?2.  相似文献   

4.
We report an effective and facile approach to enhance the dimensional and chemical stability of sulfonated poly(ether ether ketone) (SPEEK) type proton exchange membranes through simple polymer blending for fuel cell applications, using commercial available materials. The polymeric blends with sulfonated poly(aryl ether sulfone)s (SPAES) were simply fabricated by a three-component system, which contained SPEEK (10–50 wt%, 1.83 mmol/g), and SPAES-40 (1.72 mmol/g)/SPAES-50 (2.04 mmol/g) at 1:1 in weight. The SPAES-40 was selected for mechanical and dimensional stability reinforcing, while SPAES-50 for the good polymer compatibility. The obtained SPEEK/SPAES blend membranes showed depressed water uptake, better dimensional and oxidative stability, together with higher proton conductivity beyond 70 °C than the pristine SPEEK membrane. The apparent improvements in membrane properties were associated with the homogeneous dispersion of SPEEK and both SPAES copolymers inside the membranes as well as the rearrangements of the polymeric chains. The SPEEK content should be properly controlled in the range of 10–40% (B10 to B40). In a H2/O2 fuel cell test, B30 showed a maximum power density of 700 mW/cm2, which was 1.6 times as high as that of B40 at 80 °C under 100% RH. The further cross-linking treatment produced more ductile and enduring blend membranes, indicating an appreciable prospective for fuel cell applications.  相似文献   

5.
Due to further increase the performance of aromatic sulfonated proton exchange membrane (PEM) and make it play a better role in vanadium redox flow battery (VRFB), a series of poly(aryl ether sulfone)s containing eight alkyl sulfide sulfonated side chains (8SPAES-xx) are designed and synthesized. Their molecular structure, phase morphology and some selective properties were investigated in detail, respectively. It is confirmed that 8SPAES-xx membranes have clear hydrophilic/hydrophobic phase separation morphology. These membranes with the ion exchange capacity values of 1.08–1.61 mmol/g exhibit excellent ionic conductivity as well as moderate water uptake and good dimensional stability, and their values are in the range of 25–96 mS/cm, 8–28% and 5–17% at 30 °C, respectively. Among them, the proton conductivity of 8SPAES-12 membrane is 82 mS/cm at 30 °C, which exceeds the ionic conductivity of Nafion 117 (79 mS/cm). The membrane also shows high ion selectivity and excellent battery performance. At current density of 60 mA/cm2, the highest energy efficiency of VRFB with 8SPAES-12 membrane is 87.3%, which is higher than that of Nafion 117 (83.8%). Furthermore, the efficiency of VRFB with 8SPAES-12 membrane remains good cycle stability.  相似文献   

6.
Structure design is the primary strategy to acquire suitable ionomers for preparing proton exchange membranes (PEMs) with excellent performance. A series of comb-shaped sulfonated fluorinated poly(aryl ether sulfone) (SPFAES) membranes are prepared from sulfonated fluorinated poly(aryl ether sulfone) polymer (SPFAE) and sulfonated poly(aryl ether sulfone) oligomer (SPAES-Oligomer). Chemical structures of the comb-shaped membranes are verified by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra. The comb-shaped SPFAES membranes display more continuous hydrophilic domains for ion transfer, because the abundant cations and flexible side-chains structure possess higher mobility and hydrophilicity, which show significantly improved proton conductivity, physicochemical stability, mechanical property compared to the linear SPFAE membranes. In a H2/O2 single-cell test, the SPFAES-1.77 membrane achieves a higher power density of 699.3 mW/cm2 in comparison with Nafion® 112 (618.0 mW/cm2) at 80 °C and 100% relative humidity. This work offers a promising example for the synthesis of highly branched polymers with flexible comb-shaped side chains for high-performance PEMs.  相似文献   

7.
A novel proton exchange membrane was synthesized by embedding a crystalline which was nano-assembled through trimesic acid and melamine (TMA·M) into the matrix of the sulfonated poly (ether ether ketone) (SPEEK) to enhance the proton conductivity of the SPEEK membrane. Fourier transform infrared indicated that hydrogen bonds existed between SPEEK and TMA·M. XRD and SEM indicated that TMA·M was uniformly distributed within the matrix of SPEEK, and no phase separation occurred. Thermogravimetric analysis showed that this membrane could be applied as high temperature proton exchange membrane until 250 °C. The dimensional stability and mechanical properties of the composite membranes showed that the performance of the composite membranes is superior to that of the pristine SPEEK. Since TMA·M had a highly ordered nanostructure, and contained lots of hydrogen bonds and water molecules, the proton conductivity of the SPEEK/TMA·M-20% reached 0.00513 S cm−1 at 25 °C and relative humidity 100%, which was 3 times more than the pristine SPEEK membrane, and achieved 0.00994 S cm−1 at 120 °C.  相似文献   

8.
In this work, phosphotungstic acid (HPW) modified amino-functionalized mesoporous silica (AMS) as an inorganic filler (AMS@HPW) is incorporated into sulfonated poly (aryl ether sulfone) (SPAES) to prepare inorganic-organic composite membrane. The fabricated silica possesses a mesoporous structure with a surface area of 488.74 m2/g. The amino modification of silica acting as a “bridge” loads more HPW and promotes the compatibility between inorganic fillers and SPAES. The obtained SPAES/AMS@HPW composite membranes effectively inhibit HPW leakage and display better stability and fuel cell property due to the acid-base interaction and hydrogen-bond networks. Especially, the SPAES/AMS@HPW-1.0 membrane displays 18.4% higher proton conductivity (175.5 mS/cm) at 90 °C and 22.3–28.5% higher power density (470.4–678.4 mW/cm2) at 60%–100% RH than the original membrane. In addition, the SPAES/AMS@HPW-1.0 membrane still maintains stable voltage output and shows lower voltage decay (0.331 mV/h) and hydrogen permeation current density (8.28 mA/cm2) than Nafion 112 after the durability test.  相似文献   

9.
Proton exchange membranes with a wide application temperature range were fabricated to start high-temperature fuel cells under room temperature. The volume swelling stability, oxidative stability as well as mechanical properties of crosslinked membranes have been improved for covalently crosslinking poly(4,4′-diphenylether-5,5′-bibenzimidazole) (OPBI) with fluorine-terminated sulfonated poly(ether ether ketone) (F-SPEEK) via N-substitution reactions. High proton conductivity was simultaneously realized at both high (80–160 °C) and low (40–80 °C) temperatures by crosslinking and jointly constructing hydrophilic-hydrophobic channels. The crosslinked membranes exhibited the highest proton conductivity of 191 mS cm−1 at 80 °C under 98% relative humidity (RH) and 38 mS cm−1 at 160 °C under anhydrous, respectively. Compared with OPBI membrane, the fuel cell performance of the crosslinked membranes showed higher peak power density at full temperature range (40–160 °C).  相似文献   

10.
Nanocomposite membranes based on sulfonated poly (ether ether ketone) (SPEEK) and sulfonated core-shell TiO2 nanoparticles were prepared. TiO2 nanoparticles were sulfonated by redox polymerization method by using sodium styrene sulfonate (SSA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) monomers. The resultant hybrid nanoparticles (PAMPS-gTiO2 and PSSA-g-TiO2) were introduced to SPEEK with a sulfonation degree of 68%. Grafting of sulfonated polymers onto TiO2 nanoparticles enhanced the content of proton transport sites in the membrane, leading to an increase in proton conductivity and power density. Besides, the mechanical and dimensional stabilities of the nanocomposite membranes were also improved compared with pure SPEEK membrane. The maximum power density for membranes containing 7.5 wt% of PAMPS-gTiO2 and PSSA-g-TiO2 nanoparticles at 80 °C obtained 283 mW cm−2 and 245 mW cm−2, respectively.  相似文献   

11.
In this article, novel branched sulfonated poly(ether ether ketone)s (Br-SPEEK) containing various amounts of 1,3,5-tris(4-fluorobenzoyl)benzene as the branching agent have been successfully prepared. Compared with the traditional linear polymer membranes, the membranes prepared by Br-SPEEK showed improved mechanical strength, excellent dimensional stability and superior oxidative stability with similar proton conductivity. Notably, the Br-SPEEK-10 membrane began to break after 267 min in Fenton's reagent at 80 °C, which was 4 times longer than that of the L-SPEEK. Although the proton conductivity decreased with the addition of the branching agent, satisfying methanol permeability value was observed (down to 6.3 × 10−7 cm2 s−1), which was much lower than Nafion 117 (15.5 × 10−7 cm2 s−1). All the results indicated that the novel branched sulfonated poly(ether ether ketone)s membrane was potential candidate as proton conductive membranes for application in fuel cells.  相似文献   

12.
The sulfonated poly(fluorenyl ether ketone)s (SPFEK) membranes doped with SiO2 and dispersed by hydroxypropyl methyl cellulose (HPMC) were prepared and investigated for polymer electrolyte membrane fuel cells (PEMFCs) used at high temperature and low relative humidity (RH). The above membrane was prepared by solution dispersion of SPFEK and SiO2 using HPMC as dispersant. The physio-chemical properties of the hybrid membrane were studied by means of scanning electron microscope (SEM), ion-exchange capacity (IEC), proton conductivity, and single cell performance tests. The hybrid membranes dispersed by HPMC were well dispersed when compared with common organic/inorganic hybrid membranes. The hybrid membranes showed superior characteristics as a proton exchange membrane (PEM) for PEMFC application, such as high ionic exchange content (IEC) of 1.51 equiv/g, high temperature operation properties, and the satisfactory ability of anti-H2 crossover. The single cell performances of the hybrid membranes were examined in a 5 cm2 commercial single cell at both 80 °C and 120 °C under different relative humidity (RH) conditions. The hybrid membrane dispersed by HPMC gave the best performance of 260 mW/cm2 under conditions of 0.4 V, 120 °C, 50% RH and ambient pressure. The results demonstrated HPMC being an efficient dispersant for the organic/inorganic hybrid membrane used for PEM fuel cell.  相似文献   

13.
A semi-interpenetrating polymer network (semi-IPN) proton exchange membrane is prepared from the sulfonated poly(ether ether ketone) (sPEEK) and organosiloxane-based organic/inorganic hybrid network (organosiloxane network). The organosiloxane network is synthesized from 3-glycidyloxypropyltrimethoxysiane and 1-hydroxyethane-1,1-diphosphonic acid. The semi-IPN membranes prepared were stable up to 300 °C without any degradation. The methanol permeability is much lower than Nafion® 117 under addition of the organosiloxane network. The proton conductivity of semi-IPN membranes increases with an increase the organosiloxane network content; the membrane containing the 20-24 wt% organosiloxane network shows higher conductivity than Nafion® 117. The power density of the MEA fabricated with the semi-IPN membrane with 24 wt% organosiloxane network is 135 mW cm−2, much better than that of the pristine sPEEK membrane, 85 mW cm−2. Chemical synthesis of the semi-IPN membranes is identified using FTIR, and its ion cluster dimension examined using SAXS. The dimensional stability associated with water swelling and dissolution is investigated at different temperatures, and the semi IPN membranes dimensionally stable in water at elevated temperature.  相似文献   

14.
Phosphoric acid-doped sulfonated poly(tetra phenyl phthalazine ether sulfone) (PA-SPTPPES) copolymers were successfully synthesized by the 4,4′-dihydroxydiphenylsulfone with 1,2-bis(4-fluorobenzoyl)-3,4,5,6-tetraphenylbenzene (BFBTPB) and 4,4′-difluorodiphenylsulfone in sulfolane. Poly(tetra phenyl phthalazine ether sulfone)s (PTPPESs) were prepared via an intramolecular ring-closure reaction of dibenzoylbenzene of precursor and hydrazine. The sulfonated poly(tetra phenyl phthalazine ether sulfone) (SPTPPES) membranes were obtained by sulfonation under concentrated sulfuric acid, and followed phosphoric acid-doped by immersion in phosphoric acid. Different contents of doped and sulfonated unit of PA-SPTPPES (10, 15, 20 mol% of BFBTPB) were studied by FT-IR, 1H NMR spectroscopy, and thermo gravimetric analysis (TGA). The ion exchange capacity (IEC) and proton conductivity of SPTPPESs and PA-SPTPPESs were evaluated with increase of degree of sulfonation and doping level. The PA-SPTPPESs membranes exhibit proton conductivities (80 °C, relative humidity 30%) of 41.3 ∼ 74.1 mS/cm and the maximum power densities of PA-SPTPPES 10, 15, and 20 were about 294, 350, and 403 mW/cm2.  相似文献   

15.
The crosslinked highly sulfonated polyphenylsulfone (SPPSU) membranes that consists of carbon nanodots (CNDs) was prepared as a proton exchange membrane for fuel cell applications. The crosslinked membranes were developed by annealing at 180 °C, in which the crosslinking occurred between the SPPSU and CNDs. The CNDs potential was explored in detail under various loadings (0 wt %, 1 wt %, 2 wt %, and 3 wt %). Upon annealing at 180 °C, the flexibilities and strength of the SPPSU-CNDs membranes improved. The proton conductivity of the crosslinked membrane was enhanced than that of pristine SPPSU membrane due to the crosslinking effect between SPPSU and CNDs. The highest conductivity, which was at 56.3 mS/cm was obtained when 3 wt % of CNDs was incorporated at 80 °C and 90% relative humidity (RH). The results indicated that the incorporation of CNDs in the SPPSU membrane by annealing at 180 °C, exhibited a proton conductive membrane in combination with superior dimensional stability, and proton conductivity suitable for fuel cell applications.  相似文献   

16.
Novel blend nanocomposite proton‐exchange membranes were prepared using sulfonated poly (ether ether ketone) (SPEEK), perfluorosulfonic acid (PFSA), and Ba0.9Sr0.1TiO3 (BST) doped‐perovskite nanoparticles. The membranes were evaluated by attenuated total reflection, X‐ray diffraction spectroscopy, water uptake, proton conductivity, methanol permeability, and direct methanol fuel cell test. The effect of two additives, PFSA and BST, were investigated. Results indicated that both proton conductivity and methanol barrier of the blend nanocomposite membranes improved compared with pristine SPEEK and the as‐prepared blend membranes. The methanol permeability and the proton conductivity of the blend membrane containing 6 wt% BST obtained 3.56 × 10?7 cm2 s?1 (at 25 °C) and 0.110 S cm?1 (at 80 °C), respectively. The power density value for the optimum blend nanocomposite membrane (15 wt% PFSA and 6 wt% BST) (54.89 mW cm‐2) was higher than that of pristine SPEEK (31.34 mW cm‐2) and SPF15 blend membrane (36.12 mW cm‐2).  相似文献   

17.
A series of crosslinkable sulfonated poly(arylene ether sulfone)s (SPAESs) were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil and 3,3′-disulfonated-4,4′-difluorodiphenyl sulfone disodium salt. Quinoxaline-based crosslinked SPAESs were prepared via the cyclocondensation reaction of benzil moieties in polymer chain with 3,3′-diaminobenzidine to form quinoxaline groups acting as covalent and acid-base ionic crosslinking. The uncrosslinked and crosslinked SPAES membranes showed high mechanical properties and the isotropic membrane swelling, while the later became insoluble in tested polar aprotic solvents. The crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes had the lower membrane dimensional change, lower methanol permeability and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CS1-2) with measured ion exchange capacity of 1.53 mequiv. g−1 showed a reasonably high proton conductivity of 107 mS/cm with water uptake of 48 wt.% at 80 °C, and exhibited a low methanol permeability of 2.3 × 10−7 cm2 s−1 for 32 wt.% methanol solution at 25 °C. The crosslinked SPAES membranes have potential for PEFC and DMFCs.  相似文献   

18.
Sulfonated branched polymer membranes have been gaining immense attention as the separator in energy‐related applications especially in fuel cells and flow batteries. Utilization of this branched polymer membranes in direct methanol fuel cell (DMFC) is limited because of large free volume and high methanol permeation. In the present work, sulfonated fullerene is used to improve the methanol barrier property of the highly branched sulfonated poly(ether ether ketone sulfone)s membrane without sacrificing its high proton conductivity. The existence of sulfonated fullerene with larger size and the usage of small quantity in the branched polymer matrix effectively prevent the methanol transportation channel across the membrane. The composite membrane with an optimized loading of sulfonated fullerene displays the highest proton conductivity of 0.332 S cm?1 at 80°C. Radical scavenging property of the fullerene improves the oxidative stability of the composite membrane. Composite membrane exhibits the peak power density of 74.38 mW cm?2 at 60°C, which is 30% larger than the commercial Nafion 212 membrane (51.78 mW cm?2) at the same condition. From these results, it clearly depicts that sulfonated fullerene‐incorporated branched polymer electrolyte membrane emerges as a promising candidate for DMFC applications.  相似文献   

19.
This study demonstrates the successful development of hybrid mesoporous siliceous phosphotungstic acid (mPTA-Si) and sulfonated poly ether ether ketone (SPEEK) as a proton exchange membrane with a high performance in hydrogen proton exchange membrane fuel cells (PEMFC). SPEEK acts as a polymeric membrane matrix and mPTA-Si acts as the mechanical reinforcer and proton conducting enhancer. Interestingly, incorporating mPTA-Si did not affect the morphological aspect of SPEEK as dense membrane upon loading the amount of mPTA-Si up to 2.5 wt%. The water uptake reduced to 14% from 21.5% when mPTA-Si content increases from 0.5 to 2.5 wt% respectively. Meanwhile, the proton conductivity increased to 0.01 Scm?1 with 1.0 wt% mPTA-Si and maximum power density of 180.87 mWcm?2 which is 200% improvement as compared to pristine SPEEK membrane. The systematic study of hybrid SP-mPTA-Si membrane proved a substantial enhancement in the performance together with further improvement on physicochemical properties of parent SPEEK membrane desirable for the PEMFC application.  相似文献   

20.
To solve the conflict between high proton conductivity and low methanol crossover of pristine sulfonated aromatic polymer membranes, the polyorganosilicon doped sulfonated poly (ether ether ketone ketone) (SPEEKK) composite membranes were prepared by introducing polyorganosilicon additive with various functional groups into SPEEKK in this study. Scanning electron microcopy (SEM) images showed the obtained membranes were compact. No apparent agglomerations, cracks and pinholes were observed in the SEM images of composite membranes. The good compatibility between polymer and additive led to the interconnection, thus producing new materials with great characteristics and enhanced performance. Besides, the dual crosslinked structure could be formed in composite membranes through the condensation of silanols and the strong interaction between matrix and additive. The formation of dual crosslinked structure optimized the water absorption, enhanced the hydrolytic stability and oxidative stability of membranes. Especially, the incorporation of additive improved the strength and flexibility of composite membranes at the same time, meaning that the life of the composite membranes might be extended during the fuel cell operation. Meanwhile, the proton conductivity improved with increasing additive content due to the loading of more available acidic groups. It is noteworthy that at 25% additive loading, the proton conductivity reached a maximum value of 5.4 × 10−2 S cm−1 at 25 °C, which exceeded the corresponding value of Nafion@ 117 (5.0 × 10−2 S cm−1) under same experimental conditions. The composite membrane with 20 wt% additive was found to produce the highest selectivity (1.22 × 105 S cm−3) with proton conductivity of 4.70 × 10−2 S cm−1 and methanol diffusion coefficient of 3.85 × 10−7 cm2 s−1, suggesting its best potential as proton exchange membrane for direct methanol fuel cell application. The main novelty of our work is providing a feasible and environment-friendly way to prepare the self-made polyorganosilicon with various functional groups and introducing it into SPEEKK to fabricate the dual crosslinked membranes. This design produces new materials with outstanding performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号