首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on the overall numerical simulation of the parison formation and inflation process of extrusion blow molding. The competing effects due to swell and drawdown in the parison formation process were analyzed by a Lagrangian Eulerian (LE) finite element method (FEM) using an automatic remeshing technique. The parison extruded through an annular die was modeled as an axisymmetric unsteady nonisothermal flow with free surfaces and its viscoelastic properties were described by a K‐BKZ integral constitutive equation. An unsteady die‐swell simulation was performed to predict the time course of the extrudate parison shape under the influence of gravity and the parison controller. In addition, an unsteady large deformation analysis of the parison inflation process was also carried out using a three‐dimensional membrane FEM for viscoelastic material. The inflation sequence for the parison molded into a complex‐shaped mold cavity was analyzed. The numerical results were verified using experimental data from each of the sub‐processes. The greatest advantage of the overall simulation is that the variation in the parison dimension caused by the swell and drawdown effect can be incorporated into the inflation analysis, and consequently, the accuracy of the numerical prediction can be enhanced. The overall simulation technique provides a rational means to assist the mold design and the determination of the optimal process conditions.  相似文献   

2.
We tried to predict the multilayer parison shape at pinch‐off stage in extrusion blow molding by nonisothermal and purely viscous non‐Newtonian flow simulation using the finite element method (FEM). We assumed the parison deformation as a flow problem. The Carreau model was used as the constitutive equation and FEM was used for calculation method. Multilayer parison used in this simulation was composed of high‐density polyethylene (HDPE) as inner and outer layers and low‐density polyethylene (LDPE) of which viscosity is five times lower than HDPE as a middle layer. We discussed multilayer parison shape in pinch‐off region. The results obtained are as follows; the parison shape of each layer was clearly visible in the pinch‐off during the mold closing. In addition, the distribution of parison thickness ratios for each layer was located for a large deformation near the pinch‐off region. The melt viscosity for each layer has an influence on the melt flow in the pinch‐off region. In a comparison with an experimental data of parison thickness ratios, the simulation results are larger than the experimental data. These simulation results obtained are in good agreement with the experimental data in consideration of the standard deviations. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

3.
A gas‐solid‐liquid three‐phase model for the simulation of fiber‐reinforced composites mold‐filling with phase change is established. The influence of fluid flow on the fibers is described by Newton's law of motion, and the influence of fibers on fluid flow is described by the momentum exchange source term in the model. A revised enthalpy method that can be used for both the melt and air in the mold cavity is proposed to describe the phase change during the mold‐filling. The finite‐volume method on a non‐staggered grid coupled with a level set method for viscoelastic‐Newtonian fluid flow is used to solve the model. The “frozen skin” layers are simulated successfully. Information regarding the fiber transformation and orientation is obtained in the mold‐filling process. The results show that fibers in the cavity are divided into five layers during the mold‐filling process, which is in accordance with experimental studies. Fibers have disturbance on these physical quantities, and the disturbance increases as the slenderness ratio increases. During mold‐filling process with two injection inlets, fiber orientation around the weld line area is in accordance with the experimental results. At the same time, single fiber's trajectory in the cavity, and physical quantities such as velocity, pressure, temperature, and stresses distributions in the cavity at end of mold‐filling process are also obtained. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42881.  相似文献   

4.
In this article, as a nonlinear mathematical problem, the air‐drawing model and the air jet flow field model of the polymer during spunbonding process are also presented, because the continuous filament fiber not always occurs in the spunbonding process, therefore, there exists the filament fiber breakage, the broken fibers occur in the flow field of spunbonding process is a two‐phase flow problem, we suggested a new model called the sphere–spring model that can best described the broken fibers movement features. At the same time, the air‐drawing model of the polypropylene polymer in a spunbonding process is presented and solved by introducing the numerical computation results of the air jet flow field of aerodynamic device. The model's predictions of the filament fiber diameters, crystallinities, and birefringences are coincided well with the experimental data. The effects of the processing parameters on the filament fiber diameter are discussed. A lower polymer throughput rate, lower quench air temperature, higher polymer melt initial temperature, higher air initial temperature, higher air initial speed, medium smaller venturi gap, higher air suction speed, higher quench air pressure, higher air suction speed, higher extrusion temperature, higher quench air pressure, higher cooling air temperature, and so on can all produce finer filament fiber. The results show great prospects for this research in the field of computer‐assisted design of spunbonding technology. POLYM. ENG. SCI., 54:481–492, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Injection molding is one of the most common processes for cost‐effective mass production of microplastic parts. When the dimensions of the part, and thus the cavity of the mold, are small, microscale factors which are normally neglected in the analysis of conventional injection molding may play an important role. This investigation addresses the effects of mold surface roughness on the injection of polymer melt, which is a non‐Newtonian fluid, during the filling stage of microinjection molding. The surface roughness effect on the volume of the mold cavity is discussed. A simple, but effective model, to describe the conductivity and the specific heat of the surface roughness is proposed. Subsequently, by employing the finite volume method and the level set method, a numerical procedure incorporating the proposed surface roughness model to describe the flow behavior of the polymer melt in the cavity is implemented. Finally, simulation on the melt flow injected into a microdisk cavity is performed using the proposed model and the results are found to be in good agreement with experiment. POLYM. ENG. SCI., 47:2012–2019, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
This paper presents the physical phenomena and equations governing resin infusion under a flexible cover. This composite manufacturing process known as vacuum assisted resin infusion (VARI) is analyzed here when the reinforcement is covered by a thin plastic film and resin is injected by gravity after a partial level of vacuum has been achieved in the cavity. In this process, the plastic cover is deformed as the resin fills up the mold cavity. Coupling between the mechanical deformation of the flexible cover and the resin flow inside the mold cavity is described by a set of mathematical equations with boundary conditions. Based on this model, a general methodology is developed to simulate numerically the resin flow during the infusion process. Validation of the numerical results is performed by comparison with a series of experiments. POLYM. COMPOS. 26:417–427, 2005. © 2005 Society of Plastics Engineers  相似文献   

7.
The numerical modeling of the extrusion blow molding of a fuel tank is considered in this work. The integrated process phases are consecutively simulated, namely, parison formation, clamping, and inflation, as well as part solidification, part deformation (warpage), and the buildup of residual stresses. The parison formation is modeled with an integral type viscoelastic constitutive equation for the sag behavior and a semi-empirical equation for the swell behavior. A nonisothermal viscoelastic formulation is employed for the clamping and inflation simulation, since parison cooling during extrusion strongly affects the inflation behavior. Once the parison is inflated, it solidifies while in the mold and after part ejection. Warpage and residual stress development of the part are modeled with a linear viscoelastic solid model. Numerical predictions are compared with experimental results obtained on an industrial scale blow molding machine. Good agreement is observed. A process optimization based on a desired objective function, such as uniform part thickness distribution and/or minimal part weight, is performed. The integrated clamping, inflation, and cooling stages of the process are considered. The optimization is done by the systematic manipulation of the parison thickness distribution. Iterations are performed employing a gradient based updating scheme for the parison thickness programming, until the desired objective of uniform part thickness is obtained.  相似文献   

8.
Rapid heat cycle molding (RHCM) is a newly developed injection molding technology in recent years. In this article, a new electric heating RHCM mold is developed for rapid heating and cooling of the cavity surface. A data acquisition system is constructed to evaluate thermal response of the cavity surfaces of the electric heating RHCM mold. Thermal cycling experiments are implemented to investigate cavity surface temperature responses with different heating time and cooling time. According to the experimental results, a mathematical model is developed by regression analysis to predict the highest temperature and the lowest temperature of the cavity surface during thermal cycling of the electric heating RHCM mold. The verification experiments show that the proposed model is very effective for accurate control of the cavity surface temperature. For a more comprehensive analysis of the thermal response and temperature distribution of the cavity surfaces, the numerical‐method‐based finite element analysis (FEA) is used to simulate thermal response of the electric heating RHCM mold during thermal cycling process. The simulated cavity surface temperature response shows a good agreement with the experimental results. Based on simulations, the influence of the power density of the cartridge heaters and the temperature of the cooling water on thermal response of the cavity surface is obtained. Finally, the effect of RHCM process on surface appearance and tensile strength of the part is studied. The results show that the high‐cavity surface temperature during filling stage in RHCM can significantly improve the surface appearance by greatly improving the surface gloss and completely eliminating the weld line and jetting mark. RHCM process can also eliminate the exposing fibers on the part surface for the fiber‐reinforced plastics. For the high‐gloss acrylonitrile butadiene styrene/polymethyl methacrylate (ABS/PMMA) alloy, RHCM process reduces the tensile strength of the part either with or without weld mark. For the fiber‐reinforced plastics of polypropylene (PP) + 20% glass fiber, RHCM process reduces the tensile strength of the part without weld mark but slightly increases the tensile strength of the part with weld mark. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
In this study, a technique is proposed to improve the filling process of the injection molding and minimize the solidification during the filling to achieve a complete filling of the mold cavity. Two methods are proposed: stopping the flow rate of the cooling fluid or passing cooling fluid inside the cooling channels at higher temperature during a period of the injection molding cycle. The configuration studied consists of the mold with cuboids‐shape cavity having two different thicknesses. A validation of the numerical model used by an experimental work is presented. The results show that, stopping of cooling fluid on a period of injection cycle has not great effect on the improvement of injection cycle. The results indicate that passing coolant fluid at higher temperature during the ejection stage decreases the solidification of the polymer during the filling stage by about 40%. © POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

10.
This research tried to simulate three stages of injection molding cycles (filling, packing, and cooling) for polypropylene. The cavity used was a center-grated disk-shaped mold. During the filling stage, we assumed the polymer fluid obeyed the CEF equation and flowed nonisothermally. The packing stage was represented by isothermal flow of Newtonian fluid, and, during cooling stage, we took into account the effect of pressure drop on the energy balance. By finite difference method, we could solve the partial differential equations numerically. The results showed. (1) Elastic effect was not significant at the filling stage. (2) Pressure buildup in the cavity was very quick at the packing stage. (3) At the cooling stage, temperatures predicted by taking into account pressure drop were lower than those without considering pressure drop. In addition, the influences of mold temperature, flow rate, and inlet melt temperature on the three stages of injection molding process were discussed.  相似文献   

11.
The air drawing model of polymer polypropylene (PP) spunbonding nonwovens has been established. The influences of the density and the specific heat capacity of polymer melt at constant pressure changing with polymer temperature on the fiber diameter have been studied. The air drawing model of polymer in spunbonding is confirmed by the experimental results obtained with our university's equipment. The effects of the processing parameters on fibers web evenness of PP spunbonding nonwoven fabrics in wide slot positive pressure drafting assembly of spunbonding process have also been investigated. The predictions of the filament fiber diameters, crystallinities, and birefringences are coincided well with the experimental data. It is found that a medium polymer melt temperature, monomer suction wind speed, drawing pressure, cross air blow speed, and air control distance have a significant influence on the web evenness and quality, which are beneficial to produce more uniformity fibers web. The experimental results show that the agreement between the results and experimental data is very better, which verifies the reliability of these models. At the same time, the results also reveal the great potential of this research for the computer‐assisted design (CAD) of spunbonding technology. POLYM. ENG. SCI., 58:1268–1277, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1–13, 2007. © 2006 Society of Plastics Engineers  相似文献   

13.
Experimental data are reported regarding the dynamics of the blow molding process, including parison formation, growth, and inflation. These data have been obtained with the aid of high speed cinematography and pinch mold experiments, in conjunction with two commercial blow molding polyethylene resins. It is shown that pinch mold experiments alone do not yield accurate data regarding thickness and diameter swell. Furthermore, the inflation process involves decreasing rates of inflation with time, as a result of the rise in viscosity due to the cooling of the parison during inflation. Mathematical procedures are proposed for a first-order estimation of parison length and swell as a function of time and the inflation behavior after clamping. In the absence of more dependable basic procedures, the proposed treatment is employed to estimate the effective transient swell functions for the parison using experimental data obtained under the specified conditions. The mathematical treatment is extended to determine the thickness distribution of the bottle. Good agreement is obtained between experimental and calculated results.  相似文献   

14.
The most critical stage in the extrusion blow‐molding process is the parison formation, as the dimensions of the blow‐molded part are directly related to the parison dimensions. The swelling due to stress relaxation and sagging due to gravity are strongly influenced by the resin characteristics, die geometry, and operating conditions. These factors significantly affect the parison dimensions. This could lead to a considerable amount of time and cost through trial and error experiments to get the desired parison dimensions based upon variations in the resin characteristics, die geometry, and operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow‐molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of various high‐density polyethylene resin grades on parison dimensions. The resins were tested using three different sets of die geometries and operating conditions. The target parison length was achieved by adjusting the extrusion time for a preset die gap opening. The finite element software BlowParison® was used to predict the parison formation, taking into account the swell and sag. Good agreements were found between the predicted parison dimensions and the experimental data. POLYM. ENG. SCI., 2009. Published by Society of Plastics Engineers  相似文献   

15.
In today's blow molding of complex parts, an optimal resin distribution is critical to a successful operation. These goals are mostly attained through a technique known as parison programming. The process involves varying the die gap during extrusion and therefore results in a parison having a variable thickness along its length. The subsequent inflation of a variable thickness parison is a complex phenomenon involving the interaction of many process variables. The final thickness distribution and inflation patterns were obtained for various programmed parisons. Constant, one step, two step, and sinusoidal thickness parisons were studied. The inflation patterns were monitored by employing a transparent mold in conjunction with a video camera. The experimental data indicated the presence of an oscillatory inflation pattern for some of the variable thickness parisons. The experimental final part thickness distribution for these cases was highly nonlinear. Theoretical predictions of the final thickness distribution were also obtained for some of the cases. The simulation is based on the inflation of a Mooney-Rivlin hyperelastic material. A wide range of deformation is accounted for by introducing an evolutionary Mooney constant, dependent on the level of deformation.  相似文献   

16.
17.
In resin transfer molding processes, the edge effect caused by the nonuniformity of permeability between fiber preform and edge channel may disrupt resin flow patterns and often results in the incomplete wetting of fiber preform, the formation of dry spots, and other defects in final composite materials. So a numerical simulation algorithm is developed to analyze the complex mold‐filling process with edge effect. The newly modified governing equations involving the effect of mold cavity thickness on flow patterns and the volume‐averaging momentum equations containing viscous and inertia terms are adopted to describe the fluid flow in the edge area and in the fiber preform, respectively. The volume of fluid (VOF) method is applied to tracking the free interface between the two types of fluids, namely the resin and the air. Under constant pressure injection conditions, the effects of transverse permeability, edge channel width, and mold cavity thickness on flow patterns are analyzed. The results demonstrate that the transverse flow is not only affected by the transverse permeability and the edge channel width but also by the mold cavity thickness. The simulated results are in agreement with the experimental results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The parison extrusion and the effects of post-extrusion swelling and sagging in the blow molding process have been studied by several authors and some qualitative relationships with rheological parameters have been attempted. The aim of this work is to show that, under some simplifying assumptions, the relevant rheological parameters—the swelling of the parison and its tensile compliance—can be directly determined from the viscoelastic analysis of the process. The reliability of the model has been tested by experiments carried out by the pinch-off mold technique which provides the parison weight profile as a function of both previous extrusion history and mold closing delay. First of all it has been shown that the proposed model is suitable to represent the data. The swelling behavior shows the expected dependence on time and shear rate and the long-time swelling data compare well with those determined by capillary extrusion experiments. It has also been found that the measured tensile compliance is of the same order of magnitude as that determined by conversion of tensile relaxation experiments; however, in the blow molding experiments the compliance of the parison decreases with increasing extrusion shear rate, i.e., by increasing the induced anisotropy of the polymer. As rheological examples, the performance displayed on both industrial and laboratory machines is discussed for three high density polyethylenes.  相似文献   

19.
挤出吹塑型坯吹胀的CAD/CAE技术   总被引:1,自引:0,他引:1  
对挤出吹塑型坯吹胀过程的CAD/CAE技术进行了初步研究。此技术可通过对吹塑CAD几何造型,CAD/CAE间信息传递,以及CAE分析的集成,实现对挤出吹塑型坯吹胀成型工艺过程的模拟和分析。最后用实例验证了此技术的可行性,为塑料制品的设计、材料选择、模具设计、吹塑成型工艺的制定及吹塑成型工艺过程的控制提供了科学依据。  相似文献   

20.
This article reports a mold design strategy and a detailed mechanics‐based modeling approach to characterize and control the plastic deformation of premolded components during in‐mold assembly of mesoscale revolute joints. The following new results are reported in this article. First, a mesoscale mold design with varying cavity shape is described to perform in‐mold assembly of the mesoscale revolute joint. Second, a transient computational fluid dynamics (CFD) modeling approach to determine the forces experienced by the mesoscale parts due to injection molding is described. Finally, a mechanics‐based model approach developed using a combination of experimental materials property data and the CFD results as input to a finite element simulation of the deformation response of the mesoscale part is presented for the determination of critical mold design parameters that are necessary for repeatable fabrication of articulating mesoscale revolute joints. Using the advances reported in this article a mesoscale revolute joint has been successfully molded. To the best of our knowledge, this is the first demonstration of in‐mold assembly process using a varying cavity shape mold tocreate an articulating mesoscale revolute joint. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号