首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the importance of thermal conditions in influencing biodiversity of alpine river systems, knowledge of year round stream temperature variability is very limited. This paper advances understanding of alpine stream temperature dynamics using hourly resolution data collected over two consecutive years at five sites within a glacierized basin in the French Pyrénées. The potential utility of temperature for understanding river flow patterns at ungauged sites (most notably during winter) is explored. The results indicated marked heterogeneity in water column temperatures; groundwater streams were typically warmer and more thermally stable than those draining snow and ice. Based upon stream temperature patterns, it appears possible to differentiate between river flow conditions including: free‐flowing, surface freezing, dewatering and snow cover. Notably, groundwater‐fed streams appeared to exhibit greater flow permanency than meltwater‐fed streams, the latter freezing for extended periods. These new insights into long‐term alpine stream thermal conditions have major implications for understanding the strategies adopted by benthic macroinvertebrate taxa when overwintering, particularly where streams freeze. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Temporal variability in water temperature plays an important role in aquatic ecosystems, yet the thermal regime of streams has mainly been described in terms of mean or extreme conditions. In this study, annual and diel variability in stream water temperature was described at 135 unregulated, gauged streams across the USA. Based on magnitude, amplitude and timing characteristics of daily water temperature records ranging from 5 to 33 years, we classified thermal regimes into six distinct types. This classification underlined the importance of including characteristics of variability (amplitude and timing) in addition to aspects of magnitude to discriminate thermal regimes at the continental scale. We used a classification tree to predict thermal regime membership of the six classes and found that the annual mean and range in the long‐term air temperature average along with spring flows were important variables defining the thermal regime types at the continental scale. This research provides a framework for a comprehensive characterization of the thermal regimes of streams that could provide a basis for future assessment of changes in water temperature caused by anthropogenic activities such as dams, land use changes and climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The Himalayan glaciers, which number around 15 000, cover an area of 33 000 km2 and are nursed in the steepest and highest valleys in the world. Runoff from the seasonal melting of snow and ice contributes to the streamflows of the Indus, Ganga and Brahamputra river systems of the Indian subcontinent. The annual contribution from snowmelt and runoff from non‐glacierized areas during the early part of summer (April to June) amounts to 20%. As summer proceeds (July to September) the contributions from melting glacier ice and water stored within the glaciers reach 50%. In this paper the pattern of water release by melting and its chemical characteristics are described for a glacier in the Lahul‐Spiti valley of Himachal Pradesh, India.  相似文献   

4.
The effects of hydrological alterations on thermal regimes due to small water provisioning schemes are poorly understood. We studied the alteration of thermal regimes in a Mediterranean stream, where a weir and a water abstraction have been previously shown to severely affect the flow regime (e.g. frequency and duration of drought) and fish assemblage. Compared to non‐impacted sites, the daily water temperature was more variable downstream of the weir, where water flow was reduced and drying occurred every summer. However, water temperature variation was smaller in a nearby downstream site dominated by effluents from a wastewater treatment plant. In addition, compared to all other sites, the times of the day to reach minimum and maximum water temperatures were markedly different in this site receiving the wastewater plant effluents and occurred earlier in the day in the site below the weir. The relationships between air and water temperatures were tight downstream but became looser and anomalous at the sites affected by water abstraction and effluent inputs. Overall, our results show that water temperature regimes in small streams are abruptly disrupted with water provisioning schemes with unknown consequences for aquatic organisms and ecosystems. Effects may be particularly stressful in Mediterranean‐climate streams, where water is scarce and hydrological alterations pervasive. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A good understanding of the natural flow regime plays an important role in many hydrological studies. Also important in such studies is the quantification of environmental flows. This study focuses on flow metrics that best describe the natural flow regime and the hydrological characteristics for rivers in New Brunswick (Canada) as well as quantifying environment flows for these rivers. New Brunswick rivers have a mean annual flow (MAF) of approximately 23 L s?1 km?2, which is also reflective of the water availability. The frequency analysis showed that low flows (T = 2–50 years, where T is the recurrence interval) were all below the 10% MAF. Environmental flow methods based on the MAF and flow duration analysis (median flow) showed good regional regression equations. However, flow duration methods showed high variability especially at flows between Q80 and Q100. Flow targets based on the 25% MAF, Q50 and 70% Q50 were used to estimate environmental flows, particularly during low‐flow periods (winter and summer). Results showed that the 70% Q50 method should be used with caution in summer as this method provided flows in the range of 15–16% of MAF. Other methods provided environmental flows higher than 15% MAF, thus, providing better flow protection for aquatic habitat. When comparing water availability for off‐stream use (river flow–environmental flow), different parts of New Brunswick were found to be deficient in flows (i.e., river flows less than environment flows—no extractable water) during the summer and winter low‐flow periods.  相似文献   

6.
Runoff regimes in Himalayan basins are controlled mainly by melting of snow and ice cover. The air temperature is the principal variable to estimate the importance of the melting of the snow cover when using snowmelt runoff model. Changes in temperature will ultimately affect stream flow and snow/ice melt runoff in particular. Global atmospheric general circulation models (GCMs) have been developed to simulate the present climate and used to predict future climatic changes and its effect. These GCMs have certain disadvantages, therefore another simple approach of hypothetical scenarios have been developed and successfully demonstrated in this study to investigate the effect of changes in temperature. Adopted plausible climate scenarios included three temperature scenarios (T + 1, T + 2, T + 3°C). The effect of these changes has been studied on the stream flow which has contribution from snowmelt, rainfall and base flow in the Satluj basin. It was observed that with the increase in temperature there is not much change in total stream flow, but the distribution of stream flow have changed. More snowmelt runoff occurred earlier due to increased snow melting however, reduced in the monsoon months.  相似文献   

7.
Streams in the Pacific Northwest (Oregon, Washington, British Columbia) face rising summer temperatures and increasing anthropogenic influence, with consequences for fish populations. Guidance is needed in small managed watersheds for setting reservoir release rates or for the restriction of water extractions to meet the needs of fish and aquatic ecosystems. Existing environmental flow methods focus on discharge rates and do not typically consider water temperatures, and detailed thermal models are too complex for widespread implementation. We used multiple logistic regression to develop statistical models for estimating the probability of exceeding a salmonid stream temperature threshold of 22 °C as a function of discharge and maximum daily air temperatures. Data required are air temperature, stream temperature and stream discharge over a minimum of one summer. The models are used to make minimum discharge recommendations under varying forecast weather conditions. The method was applied to nine streams in the Pacific Northwest. Minimum recommended discharge generally ranged from 23% to 86% of mean annual discharge and was higher than observed low flows in most streams. Comparison of the new method to existing methods for Fortune Creek in British Columbia indicated that total season discharge volumes could be reduced while meeting thermal requirements. For other streams, it was evident that high water temperatures cannot be managed by increasing discharge, as the discharge required would be greater than natural discharge and higher than achievable by management. The statistical method described in this paper allows for a risk‐based approach to discharge management for fish habitat needs.  相似文献   

8.
Although small and medium‐size dams are prevalent in North America, few studies have described their year‐round impacts on the thermal regime of rivers. The objective of this study was to quantify the impacts of two types of dams (run‐of‐river, storage with shallow reservoirs) on the thermal regime of rivers in eastern Canada. Thermal impacts of dams were assessed (i) for the open water period by evaluating their influence on the annual cycle in daily mean water temperature and residual variability and (ii) for the ice‐covered winter period by evaluating their influence on water temperature duration curves. Overall, results showed that the run‐of‐river dam (with limited storage capacity) did not have a significant effect on the thermal regime of the regulated river. At the two rivers regulated by storage dams with shallow reservoirs (mean depth < 6 m), the annual cycle in daily mean water temperature was significantly modified which led to warmer water temperatures in summer and autumn. From August to October, the monthly mean water temperature at rivers regulated by storage dams was 1.4 to 3.9°C warmer than at their respective reference sites. During the open water period, the two storage dams also reduced water temperature variability at a daily timescale while increased variability was observed in regulated rivers during the winter. Storage dams also had a warming effect during the winter and the winter median water temperature ranged between 1.0 and 2.1°C downstream of the two storage dams whereas water temperature remained stable and close to 0°C in unregulated rivers. The biological implications of the altered thermal regimes at rivers regulated by storage dams are discussed, in particular for salmonids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We collected fish samples and measured physical habitat characteristics, including summer stream temperatures, at 156 sites in 50 tributary streams in two sampling areas (Upper Fraser and Thompson Rivers) in British Columbia, Canada. Additional watershed characteristics were derived from GIS coverages of watershed, hydrological and climatic variables. Maximum weekly average temperature (MWAT), computed as an index of summer thermal regime, ranged from 10 to 23 °C. High values of MWAT were associated with large, warm, low relief watersheds with a high lake influence. Measures of community similarity suggested that the fish community changed most rapidly through a lower transition zone at an MWAT of about 12 °C and an upper transition zone at an MWAT of about 19 °C. These results were confirmed using existing fisheries inventory data combined with predictions of MWAT from a landscape‐scale regression model for the Thompson River watershed. For headwater sites in the Chilcotin River watershed (which drains into the middle Fraser River), the relative dominance of bull trout versus rainbow trout (based on inventory data) decreased with increasing predicted MWAT although the distinction was not as clear as for the Thompson River sites. The fish communities in these watersheds can be characterized in terms of very cold water (bull trout and some cold water species), cold water (salmonids and sculpins) and cool water (minnows and some cold water salmonids). The two transition zones (ca 12 and 19 °C) can be used to identify thresholds where small changes in stream temperature can be expected to lead to large changes in fish communities. Such clear, quantifiable thresholds are critical components of a management strategy designed to identify and protect vulnerable fish communities in streams where poor land use practices, alone or in combination with climatic change, can lead to changes in stream temperatures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Intermittent streams lose surface flow during some portion of the year and can be important breeding and rearing habitats for stream biota. However, habitat contraction and deteriorating water quality across the summer can result in harsh conditions and mortality. We explored patterns of drying in a small intermittent stream across the summer in Mediterranean‐climate California, including across 4 years that differed in antecedent precipitation. Wet–dry mapping revealed earlier stream fragmentation following dry winters and that entire sections of the stream varied in their propensity to dry suggesting an important influence of geomorphology on drying. Within two ‘slow‐drying’ reaches, initial riffle volumes were higher following wetter winters, but the rate of riffle drying was higher following wet years, presumably because higher initial volumes resulted in greater drying capacity. Initial pool volumes were similar across years, but the rate of pool drying was faster following dry versus wet winters (pool half‐life ranged from 9.7 weeks in the driest year to 26.3 weeks in the wettest year). Stream temperature differed among years, but differences were slight, and temperatures rarely exceeded optimal conditions for trout growth. We observed limited movement of trout during drier years and found that movement was negatively associated with pool depth, riffle length and date, and positively associated with riffle volume. Overall, we found that antecedent rainfall influenced variability in pool drying more than riffle drying, that entire sections of the creek varied in their propensity to dry and that biological fragmentation preceded physical fragmentation by 3 to 7 weeks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
寒冷区明渠冬季输水结冰是常见的自然现象。南水北调中线工程水面一旦形成冰盖其安全输水流量仅为设计流量的30%~50%,而气温是驱动冰盖形成的主要因子,如何科学评价冬季气温等级是冰期输水面临的关键问题之一。分析了沿线8座气象站1951—2021年冬季日平均气温和日最低气温数据,揭示了总干渠气温沿程和年际变化规律。基于拉格朗日质点跟踪法,结合沿线气温-水温-冰盖生成物理过程,提出了气温链概念并给出通用数学表达式。分别采用国标法、一月平均气温法和气温链法评价冬季气温等级,构建了71 a冬季气温位次。结果表明:①总干渠自南向北气温逐级下降速率为0.48 ℃/(100 km),保定站呈加速下降趋势,对冰盖生成贡献最大。②沿线冬季气温总体呈波动上升趋势,升温速率为0.37 ℃/(10 a),强暖冬出现在最近30 a,强冷冬出现在前30 a,气温的总体上升有利于减缓大范围冰盖生成。③对于冰盖生成预测,气温链法优于一月平均气温法,更优于国标法;不同时间尺度组合评价可获得更优的结果;全球持续变暖背景下,可采用一月平均气温法和北方2站6 d气温链法联合评价。④给出了北方2站6 d气温链法冬季等级的分界阈值,即强暖冬TC≥-4.0 ℃,弱暖冬-5.7 ℃≤TC<-4.0 ℃,正常-7.4 ℃<TC<-5.7 ℃,弱冷冬-9.1 ℃<TC≤-7.4 ℃,强冷冬TC≤-9.1 ℃,长系列均值为-6.5 ℃。研究成果可更好地为南水北调中线工程总干渠冰盖生成提供新的参考基准。  相似文献   

12.
We investigated the effects of climate warming and land‐use changes on the temperature and discharge of seven Swiss and Italian streams in the catchment of Lake Lugano. In addition, we attempted to predict future stream conditions based on regional climate scenarios. Between 1976 and 2012, the study streams warmed by 1.5–4.3 °C, whereas discharge showed no long‐term trends. Warming trends were driven mainly by catchment urbanization and two large‐scale climatic oscillations, the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. In comparison, independent influences by radiative forcing due to increased atmospheric CO2 were uncertain. However, radiative forcing was predicted to further increase stream temperature (to +3–7 °C), reduce summer discharge (to ?46%) and increase winter discharge (to +96%) between the present and 2070–2099. These results provide new insights into the drivers of long‐term temperature and discharge trends in European streams subject to multiple impacts. The picture emerging is one of transition, where greenhouse‐gas forcing is gaining ground over climate oscillations and urbanization, the drivers of past trends. This shift would impress a more directional nature upon future changes in stream temperature and discharge, and extend anthropogenic warming to rural streams. Diffusing future impacts on stream ecosystems would require adaptation measures at local to national scales and mitigation of greenhouse‐gas emissions at the global scale. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
黄河平封冰和立封冰中冰晶体间以水膜形式存在有未冻结的自由水和非自由水,其含量随冰温变化。理论上冰内雷达波速取决于冰体自身的晶体结构和组分,但冰内未冻水含量可对其产生明显的影响;冰内未冻水含量取决于冰温,冰温又受控于气温、辐射和冰厚。分析了黄河什四份子2020—2021年冬季气温和雷达探测冰厚数据,发现气温主导的未冻水含量变化是影响雷达准确探测平封冰厚度的首要因子。通过确定黄河冰-水界面热通量,并引入含有气温、辐射、风速、云量的一维冰热力学模型,结合13个钻孔实测冰厚,计算了与雷达探测冰厚时刻一致的1251个热力学模拟冰厚。在此基础上,分别获得了气温升高过程和降低过程中粒状冰、柱状冰内雷达波速受气温影响以及受气温和冰厚联合影响的统计关系。最终确定将气温和冰厚对雷达波速联合影响的统计关系作为平封冰雷达波速动态修正的参数化方案,依此将固定式雷达冰内雷达波速由常数更换为函数,从而提高了平封冰雷达冰厚探测的精度。根据黄河存在非冻结冰花和堆积碎冰块,建议开展不同类型冰厚探测研究。  相似文献   

14.
In‐stream habitat enhancement is a common remedial action in rivers where degradation/lack of suitable fish habitat can be diagnosed. However, post‐project monitoring to assess the response of the biota to modification is rare particularly during winter. We conducted in situ monitoring during the winters of 2004–2006 in the regulated Dalåa River, central Norway, in order to determine if winter habitat requirements of Atlantic salmon (Salmo salar L.) parr were realized in an enhanced (substrate and mesohabitat modification) reach. In total, 140 parr were marked with passive integrated transponder (PIT) tags and the fish were followed by carrying out active tracking surveys under variable ice conditions throughout the winter. Highest emigration (44%) occurred before ice formation started. Emigration was reduced after ice formed and was largely offset by parr re‐entering the enhanced area. Dispersal into the non‐enhanced, small substrate control area was observed only when the study reach was ice covered, and no parr were subsequently encountered in the control section after ice had melted. In the enhanced area, declining water temperature and surface ice conditions did not affect the spatial distribution of the resident salmon parr at the studied scale. Areas with ‘solid’ anchor ice precluded access for salmon parr whilst areas with ‘patchy’ anchor were used throughout the winter. Our results indicate that surface ice creates conditions that allow salmon parr to use stream habitats that otherwise provide only a limited amount of in‐stream cover. Ice processes should be taken into consideration when habitat enhancement projects are carried out and subsequently assessed for effectiveness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
During winter, different types of ice formation are commonly observed in northern boreal stream systems. Although largely overlooked today, river ice has profound effects on in‐stream hydraulics and therefore ice processes should be considered in freshwater stream management and assessment. In particular, limited knowledge exists about the impacts of dynamic ice formation on stream environments. Results presented from the changes of in‐stream heterogeneity in three steep stream environments caused by dynamic ice formation demonstrate that the formation of anchor ice and anchor ice dams may induce significant backwater effects by increasing wetted areas (maximum 43%) and water depths (maximum 241%) and reducing water velocities (maximum 70%); independent of minimal changes in discharge. Consequently, stream environments are transformed from fast‐flow to slow‐flow areas, even on a short temporal scale (<12 h). Furthermore, the anchor ice build‐up initiated static (surface) ice formation due to reduced local water velocities upstream ice dams. Thus, dynamic ice formation plays a key role in the balanced ice regime in steep stream environments and contributes largely to stable static ice cover in these environments. Observations from the present study suggest that the current paradigm emphasizing the role of discharge as the main controller of in‐stream heterogeneity may call for a modification in steep streams that experience seasonal ice formation. This is particularly important if future hydraulic‐/habitat models and assessment tools are to be implemented in freshwater management to realistically characterize steep stream environments in cold climate regions on a seasonal scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Pacific salmon (Oncorhynchus) use a variety of rearing environments prior to seaward migration, yet large river habitats and their use have not been well defined, particularly at the southernmost salmon range where major landscape‐level alterations have occurred. We explored juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) presence along the river continuum and in main‐channel and off‐channel habitats of a regulated California Mediterranean‐climate river. Over an 8‐year period, off‐channels of the lower Mokelumne River exhibited slower and warmer water than the main‐channel. Probability of salmonid presence varied by stream reach and habitat types. Steelhead and Chinook salmon both demonstrated transitional responses to the dry season, with juveniles leaving off‐channels by midsummer. This corresponded to flow recession, increasing water temperatures, salmonid growth and end of emigration period. Main‐channel steelhead observations continued until the following storm season, which brought cool flood flows to reconnect off‐channels and the next juvenile cohort of both species to the river. Within arid climates, low‐gradient off‐channels appear more transiently used than in cooler and more northern humid climate systems. Within a highly regulated Mediterranean‐climate river, off‐channel habitats become increasingly scarce, disconnected or temperature limiting in low‐gradient reaches both seasonally and due to anthropogenic modifications. These observations may provide guidance for future management within large salmon streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Whole Farm Planning was instituted and monitored over a 5-year period within the Graywood Gully sub-watershed of Conesus Lake, NY (USA). An array of agricultural Best Management Practices (BMPs) (strip cropping, fertilizer reduction, tiling, manure disposal practices, etc.) were simultaneously introduced to determine the impact of a concentrated management effort on nutrient and soil loss from one watershed within the Conesus Lake catchment. During the study period, significant decreases in winter concentrations of dissolved and particulate fractions, including total phosphorus (TP), soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN), and nitrate (NO3) but not total suspended solids (TSS), were observed. These decreases may or may not be attributed to cessation of manuring practices. Three years into the study, an opportunity existed to test the responsiveness of the watershed to the curtailment of a single BMP — winter manure application to fields. We field-tested the hypothesis that a change in winter manure applications would impact dissolved and particulate fractions in stream water draining this watershed. We found that the water quality of Graywood Gully is very responsive to winter manure application on environmentally sensitive portions of the sub-watershed. With the short-term resumption of manure application, TP, SRP, TKN, and NO3 concentrations rose dramatically in stream water; elevated phosphorus concentrations persisted over a 5-week period. Total suspended solids, however, were not elevated after short-term manure application. Factors that affected these results were slope of the land, application of manure over snow and during a snowfall, warm air and soil temperatures, and possibly tile drainage of snowmelt water. Managers of agricultural systems must recognize that phosphorus losses from the watershed during the nongrowing season may detrimentally affect nuisance population of algae in lakes during the summer.  相似文献   

18.
Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low‐flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
Dam removal can restore fish passage, natural flow regimes, sediment transport in streams, dispersal of organic matter, and drift of aquatic insects. However, dam removal also impacts the riparian vegetation, with both immediate and delayed responses. In this study, we measure vegetation change at the Merrimack Village Dam site on the Souhegan River in Merrimack, NH, USA. The August 2008 removal caused a ~3‐m drop in water level and rapid erosion of impounded sediment, with ~50% removed in the first 3 months. Terrace, floodplain, and wetland communities were surveyed in summer 2007, 2009, 2014, and 2015. Temporal change was quantified using Analysis of Similarity on the Bray–Curtis dissimilarity matrix. Only herbaceous vegetation closest to the river channel and in the off‐channel wetland changed significantly. The herbaceous plots directly adjacent to the impoundment eroded to bare sand in 2009, but by 2014, the original riparian fringe community had re‐established in the newly developed floodplain. Between 2007 and 2014, the off‐channel wetland area changed from aquatic species to a stable terrestrial community that persisted without significant change in 2015. The vegetation response was greatest in areas with the largest geomorphic and hydrologic change. These included the channel margin where erosion and bank slumping created an unstable scarp. The mid‐channel island and off‐channel wetland were strongly affected by the lowered water table. However, large unvegetated areas never persisted nor did the areal coverage of invasive species expand, which are two frequent concerns of dam removal stakeholders.  相似文献   

20.
Most studies dealing with greenhouse gas (GHG) emissions from large boreal reservoirs were conducted during the ice‐free period. In this paper, the potential methane (CH4) and carbon dioxide emissions are estimated for two hydroelectric reservoirs, as well as for a small experimental reservoir from boreal latitudes (northern Quebec, Canada) at the ice break‐up event through diffusion (diffusive fluxes) and release of bubbles (bubbling fluxes). The results of this preliminary study suggest that the winter diffusive fluxes at the air–water interface of the sampled reservoirs represent < 7% of their cumulative carbon emissions during the ice‐free period. Furthermore, the release upon ice‐break of CH4 bubbles accumulated under the ice cover during the winter could represent  2% of the summer carbon emissions from hydroelectric reservoirs in northern Quebec. The results presented herein suggest that the GHG emissions upon ice break‐up from the boreal reservoirs investigated are a small, but non‐negligible, component of their annual GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号