首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel processing technique, i.e. high‐pressure compression molding/salt leaching, was developed to fabricate ultraporous poly(lactic acid) (PLA) scaffolds. The optimized composition was studied in relation to the porosity, pore morphology, thermal property, and mechanical performance of the PLA scaffolds. At a porogen (CaCO3) content of 90 wt %, the scaffolds have an interconnected open pore structure and a porosity above 80%. It was truly interesting that the structural stability of high‐pressure molded scaffolds was remarkably improved based on the fact that its glass transition temperature (83.5°C) increased about 20°C, as compared to that of the conventional compression‐molded PLA (60°C), which is not far from physiological temperature (~37°C) at the risk of structural relaxation or physical aging. More importantly, the mechanical performance of PLA scaffolds was drastically enhanced under optimized processing conditions. At pressure and temperature of 1000 MPa and 190°C, the porous PLA scaffolds attained a storage modulus of 283.7 MPa, comparable to the high‐end value of trabecular bone (250 MPa) ever reported. In addition, our prepared PLA scaffolds showed excellent cellular compatibility and biocompatibility in vitro tests, further suggesting that the high‐pressure molded PLA scaffolds have high potential for bone tissue engineering applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3509–3520, 2013  相似文献   

2.
The development of porous biodegradable scaffolds is of great interest in tissue engineering. In this regard, exploration of novel biocompatible materials is needed. Silk fibroin‐chondroitin sulfate‐sodium alginate (SF‐CHS‐SA) porous hybrid scaffolds were successfully prepared via lyophilization method and crosslinked by 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide‐ethanol treatment. According to the scanning electron microscopy studies, mean pore diameters of the scaffolds were in the range of 60–187 μm. The porosity percentage of the scaffold with SF‐CHS‐SA ratio of 70 : 15 : 15 (w/w/w %) was 92.4 ± 3%. Attenuated total reflectance Fourier transform infrared spectroscopy, X‐ray diffraction, and differential scanning calorimetry results confirmed the transition from amorphous random coil to crystalline β‐sheet in treated SF‐CHS‐SA scaffold. Compressive modulus was significantly improved in hybrid scaffold with SF‐CHS‐SA ratio of 70 : 15 : 15 (3.35 ± 0.15 MPa). Cytotoxicity assay showed that the scaffolds have no toxic effects on chondrocytes. Attachment of chondrocytes was much more improved within the SF‐CHS‐SA hybrid scaffold. Real‐time polymerase chain reaction analyses showed a significant increase in gene expression of collagen type II, aggrecan, and SOX9 and decrease in gene expression of collagen type I for SF‐CHS‐SA compared with SF scaffold. This novel hybrid scaffold can be a good candidate to be utilized as an efficient scaffold for cartilage tissue engineering. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41048.  相似文献   

3.
Three dimensional (3D) biodegradable porous scaffolds play a crucial role in bone tissue repair. In this study, four types of 3D polymer/hydroxyapatite (HAp) composite scaffolds were prepared by freeze drying technique in order to mimic the organic/inorganic nature of the bone. Chitosan (CH) and poly(lactic acid‐co‐glycolic acid) (PLGA) were used as the polymeric part and HAp as the inorganic component. Properties of the resultant scaffolds, such as morphology, porosity, degradation, water uptake, mechanical and thermal stabilities were examined. 3D scaffolds having interconnected macroporous structure and 77–89% porosity were produced. The pore diameters were in the range of 6 and 200 µm. PLGA and HAp containing scaffolds had the highest compressive modulus. PLGA maintained the strength by decreasing water uptake but increased the degradation rate. Scaffolds seeded with SaOs‐2 osteoblast cells showed that all scaffolds were capable of encouraging cell adhesion and proliferation. The presence of HAp particles caused an increase in cell number on CH‐HAp scaffolds compared to CH scaffolds, while cell number decreased when PLGA was incorporated in the structure. CH‐PLGA scaffolds showed highest cell number on days 7 and 14 compared to others. Based on the properties such as interconnected porosity, high mechanical strength, and in vitro cell proliferation, blend scaffolds have the potential to be applied in hard tissue treatments. POLYM. COMPOS., 36:1917–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
Porous Poly‐l ‐lactide (PLLA) scaffolds and PLLA/nanohydroxyapatite (nHA) composite scaffolds with interconnected pore networks and a porosity of over 90% were fabricated with lyophilization techniques. In this study, the degradation behavior of PLLA and PLLA/nHA composite scaffolds is investigated over 8 weeks in phosphate buffer solution at 37°C. Thermal analysis using differential scanning calorimetry (DSC) showed that the percent crystallinity of all the samples increased by approximately 10%, which represents a considerable increase in the glass transition temperature. The melting range enthalpy of the scaffolds did not change to lower temperatures as would be expected. The spectroscopic analysis performed by Fourier transform infrared spectroscopy suggested that nHA particles should not appreciably affect the absorbance pattern when evenly mixed with the PLLA. This is consistent with the analysis of the scaffold microstructure and morphology with scanning electron microscopy, which drew a low content of nHA with no significant effect on solvent crystallization or pore structure. The compressive modulus and the yield strength of the scaffolds were investigated in conjunction with the study of their degradation rates. In comparison with the mechanical properties of the PLLA scaffolds, which remained largely unchanged, those of the PLLA/nHA composite scaffolds decreased as the degradation progressed. POLYM. ENG. SCI., 54:2571–2578, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Porous yttria‐stabilized zirconia (YSZ) ceramics were fabricated using tert‐butyl alcohol (TBA)‐based gelcasting with monodisperse polymethylmethacrylate (PMMA) microspheres as both pore‐forming agent and lubricant agent. The TBA‐based slurry of 50 vol% solid loading with excellent rheological properties appropriate for casting was successfully prepared by using a commercial polymer dispersant DISPERBYK‐163 as both dispersant and stabilizer. The distribution of the spherical pores made from PMMA microspheres was very homogeneous. Their average diameter decreased from 16.9 to 15.7 μm when the sintering temperature was increased from 1350°C to 1550°C. The compressive strength increased from 14.57 to 142.29 MPa and the thermal conductivity changed from 0.17 to 0.65 W/m·K when the porosity decreased from 71.6% to 45.1%. The results show that this preparation technology can make all the main factors controllable, such as the porosity, the size and shape of pores, the distribution of pores, and the thickness and density of pore walls. This is significant for fabricating porous ceramics with both high compressive strength and low thermal conductivity.  相似文献   

6.
Silica‐gelatin hybrids, particularly GT‐G hybrids prepared by crosslinking gelatin (G) with γ‐glycidoxypropyltrimethoxysilane (GT), have attracted much attention in tissue engineering for diverse applications in hard or soft tissue regeneration; however, scaffolds with tunable properties are needed to meet specific requirements. In this work, a silica‐gelatin hybrid (ES/GT‐G) was synthesized by incorporating epoxy‐terminated polydimethylsiloxane oligomer (ES) to modulate the properties of GT‐G hybrid. The ES/GT‐G hybrid sponge presented a 3D network structure with porosity 86.4% ± 0.9%, determined by the liquid displacement method, and average pore size 340 ± 36 μm, determined by SEM observation. Compared with GT‐G hybrid material, the prepared ES/GT‐G hybrid wet film showed a decrease of tensile strength from 2.79 ± 0.04 MPa to 1.87 ± 0.12 MPa, with an increase of elongation at break from 19.96 ± 0.66% to 29.86 ± 0.87%, and the ES/GT‐G hybrid sponge exhibited a decline of compressive yield strength from 1.21 ± 0.04 MPa to 0.72 ± 0.06 MPa, based on the tensile and compression tests respectively. The introduction of ES enhanced the thermal denaturing temperature of GT‐G by 5°C as determined by a DSC study, and increased in vitro biodegradation slightly, without significantly changing surface wettability and swelling behavior. These findings suggest that silica‐gelatin hybrids with tunable properties are promising for applications from hard to soft tissue regeneration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43059.  相似文献   

7.
This study presents a comprehensive parametric study on the effects of processing parameters on the poly(DL‐lactide‐co‐glycolide) acid (PLGA) 85/15 scaffold's physical properties. Porous PLGA 85/15 scaffolds were prepared using a gas foaming/salt leaching technique. The processing parameters under examination for the gas foaming/salt leaching method included: gas saturation pressure (SP), gas saturation time, and NaCl/polymer mass ratio (NaCl/PMR). The physical properties considered in this study were the scaffold density, the scaffold porosity, and the average pore size of the scaffold. Young's moduli in compression, as well as the pore density (PD) inside the scaffold, were also studied. The results demonstrated optimum correlations of processing parameters are required to produce a scaffold with a high level of interconnectivity. In general, all scaffolds yielded by this experiment exhibited a porosity more than 90%, a relative density ranging from 0.0534 to 0.149 g/cm3, a PD ranging from 1.51 × 106 to 6.72 × 106 pores/cm3, and a compressive modulus ranging from 0.07 to 0.84 MPa. It was determined that the NaCl/PMR was the parameter that had the most significant effect on the physical properties of the scaffold. The average pore size was affected slightly by the SP only, and it was observed that the pore size was equivalent to the size of the NaCl particles used to make the scaffold. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
Scaffolds with multimodal pore structure are essential to cells differentiation and proliferation in bone tissue engineering.Bi-/multi-modal porous PLGA/hydroxyapatite composite scaffolds were prepared by supercritical CO_2 foaming in which hydroxyapatite acted as heterogeneous nucleation agent.Bimodal porous scaffolds were prepared under certain conditions,i.e.hydroxyapatite addition of 5%,depressurization rate of 0.3 MPa·min~(-1),soaking temperature of 55℃,and pressure of 9 MPa.And scaffolds presented specific structure of small pores(122 μm±66 μm)in the cellular walls of large pores(552μm±127μm).Furthermore,multimodal porous PLGA scaffolds with micro-pores(37 μm±11 μm)were obtained at low soaking pressure of 7.5 MPa.The interconnected porosity of scaffolds ranged from(52.53±2.69)% to(83.08±2.42)%by adjusting depressurization rate,while compression modulus satisfied the requirement of bone tissue engineering.Solvent-free CO_2 foaming method is promising to fabricate bi-/multi-modal porous scaffolds in one step,and bioactive particles for osteogenesis could serve as nucleation agents.  相似文献   

9.
Biodegradable poly(L ‐lactide) (PLLA) scaffolds with well‐controlled interconnected irregular pores were fabricated by a porogen leaching technique using gelatin particles as the porogen. The gelatin particles (280–450 μm) were bonded together through a treatment in a saturated water vapor condition at 70°C to form a 3‐dimensional assembly in a mold. PLLA was dissolved in dioxane and was cast onto the gelatin assembly. The mixtures were then freeze‐dried or dried at room temperature, followed by removal of the gelatin particles to yield the porous scaffolds. The microstructure of the scaffolds was characterized by scanning electron microscopy with respect to the pore shape, interpore connectivity, and pore wall morphology. Compression measurements revealed that scaffolds fabricated by freeze‐drying exhibited better mechanical performance than those by room temperature dying. Along with the increase of the polymer concentration, the porosity of the scaffolds decreased whereas the compressive modulus increased. When the scaffolds were in a hydrated state, the compressive modulus decreased dramatically. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1373–1379, 2005  相似文献   

10.
The aim of this work was to develop bioactive chitosan scaffolds reinforced with monetite‐containing whisker‐like fibers. The fibers synthesized by homogeneous precipitation were characterized as monetite/hydroxyapatite short fibers (MAFs), using XRD, FTIR and SEM. The pure chitosan and MAFs/chitosan composite scaffolds were produced by freeze‐drying, and characterized with respect to porosity, pore size, swelling behavior, compressive strength and modulus, and in vitro bioactivity. The incorporation of MAFs in chitosan matrices led to increase the pore size, according to the evaluation by FE‐SEM, and decrease the porosity of composite scaffolds. The swelling ratio decreased as MAFs content of scaffolds increased. The compressive strength and modulus of scaffolds were improved by an increase in MAFs content. The noncross‐linked scaffolds with a chitosan: MAFs weight ratio of 1:1 (CW3) showed a porosity of 75.5%, and the strength and modulus of 259 kPa and 2.8 MPa in dry state, respectively. The crosslinking by glutaraldehyde resulted in improved mechanical properties. The strength and modulus of cross‐linked CW3 scaffolds in wet state reached to 345 kPa and 1.8 MPa, respectively. The in vitro bioactivity of the reinforced scaffolds, evaluated by FE‐SEM/EDS, XRD, and ATR‐FTIR, was confirmed by the formation of a carbonated apatite layer on their surfaces when they soaked in simulated body fluid (SBF). The results of this initial study indicate that the monetite‐containing whisker‐like fibers may be an appropriate reinforcement of chitosan scaffolds.  相似文献   

11.
Two different hydroxyapatites with the particle sizes of 3.9 and 1.69 μm were chosen. Slurries with initial hydroxyapatite concentration of 15 vol% were prepared. Different cooling rates from 2 to 14°C/min were utilized. The specimens were sintered at different temperatures of 1250–1350°C. The phase composition (by X‐Ray Diffraction), microstructure (by Scanning Electron Microscopy), mechanical characteristics, and the porosity of sintered samples were assessed. The porosity of the sintered samples was in range of ~57–83%, and the compressive strength varied from ~1.7 to 15 MPa. The mechanical strength of the scaffolds increased as a function of cooling rate and sintering temperature.  相似文献   

12.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

13.
Tissue engineering for articular cartilage repair has shown success in ensuring the integration of neocartilage with surrounding natural tissue, but the rapid restoration of biomechanical functions remains a significant challenge. The poly(vinyl alcohol) (PVA) hydrogel is regarded as a potential articular cartilage replacement for its fair mechanical strength, whereas its lack of bioactivity limits its utility. To obtain a scaffold possessing expected bioactivity and initial mechanical properties, we herein report a novel salt‐leaching technique to fabricate a porous PVA hydrogel simultaneously embedded with poly(lactic‐co‐glycolic acid) (PLGA) microspheres. Through the investigation of environmental scanning electron microscopy, we found that the porous PVA/PLGA scaffold was successfully manufactured. The compression and creep properties were also comprehensively studied before and after cell culturing. The relationship between the compressive modulus and strain ratio of the porous PVA/PLGA scaffold showed significant nonlinear behavior. The elastic compressive modulus was influenced a little by the porogen content, whereas it went higher with a higher PLGA microsphere content. The cell‐cultured scaffolds presented higher compressive moduli than the initial ones. The creep resistance of the cell‐cultured scaffolds was much better than that of the initial ones. In all, this new scaffold is a promising material for articular cartilage repair. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40311.  相似文献   

14.
The successful fabrication of hydroxyapatite‐bioactive glass scaffolds using honeycomb extrusion is presented herein. Hydroxyapatite was combined with either 10 wt% stoichiometric Bioglass® (BG1), calcium‐excess Bioglass® (BG2) or canasite (CAN). For all composite materials, glass‐induced partial phase transformation of the HA into the mechanically weaker β‐tricalcium phosphate (TCP) occurred but XRD data demonstrated that BG2 exhibited a lower volume fraction of TCP than BG1. Consequently, the maximum compressive strength observed for BG1 and BG2 were 30.3 ± 3.9 and 56.7 ± 6.9 MPa, respectively, for specimens sintered at 1300°C. CAN scaffolds, in contrast, collapsed when handled when sintered below 1300°C, and thus failed. The microstructure illustrated a morphology similar to that of BG1 sintered at 1200°C, and hence a comparable compressive strength (11.4 ± 3.1 MPa). The results highlight the great potential offered by honeycomb extrusion for fabricating high‐strength porous scaffolds. The compressive strengths exceed that of commercial scaffolds, and biological tests revealed an increase in cell viability over 7 days for all hybrid scaffolds. Thus it is expected that the incorporation of 10 wt% bioactive glass will provide the added advantage of enhanced bioactivity in concert with improved mechanical stability.  相似文献   

15.
A direct‐foaming technique to produce macro‐porous ceramics is presented considering three key aspects: (i) a processing route without toxic additives, (ii) optimizing particle packing and dispersion of ceramic suspensions to obtain denser struts, and (iii) processing reliability for large‐scale production. To achieve the latter goal, specific foaming equipment was designed. Ceramics with large dimensions (250 × 60 × 110 mm3), high porosity level (>70%), homogeneous and narrower pore‐size distribution, high Weibull modulus (8 to 11), improved mechanical strength (3 to 15 MPa) for different compositions and low thermal conductivity at 1200°C (0.3 to 0.9 W/mK) were attained.  相似文献   

16.
We developed a new Li2O–Al2O3–SiO2 (LAS) ultra‐low expansion glass‐ceramic by nonisothermal sintering with concurrent crystallization. The optimum sintering conditions were 30°C/min with a maximum temperature of 1000°C. The best sintered material reached 98% of the theoretical density of the parent glass and has an extremely low linear thermal expansion coefficient (0.02 × 10?6/°C) in the temperature range of 40°C–500°C, which is even lower than that of the commercial glass‐ceramic Ceran® that is produced by the traditional ceramization method. The sintered glass‐ceramic presents a four‐point bending strength of 92 ± 15 MPa, which is similar to that of Ceran® (98 ± 6 MPa), in spite of the 2% porosity. It is white opaque and does not have significant infrared transmission. The maximum use temperature is 600°C. It could thus be used on modern inductively heated cooktops.  相似文献   

17.
Epoxidized soybean oil (ESO) was cured with a terpene‐based acid anhydride (TPAn) at 150°C, and the thermal and mechanical properties of the cured product were compared with ESO cured with hexahydrophthalic anhydride (HPAn), maleinated linseed oil (LOAn), or thermally latent cationic polymerization catalyst (CPI). The ESO‐TPAn showed a higher glass transition temperature (67.2°C) measured by dynamic mechanical analysis than ESO‐HPAn (59.0°C), ESO‐LOAn (?41.0°C), and ESO‐CPI (10.0°C). The storage modulus at 20°C of ESO‐TPAn was higher than those of ESO‐LOAn and ESO‐CPI. Also, ESO‐TPAn showed higher tensile strength and modulus than the other cured ESOs. Regarding the biodegradability measured by biochemical oxygen demand in an activated sludge, ESO‐TPAn possessed some biodegradability, which was lower than that of ESO‐LOAn. Next, biocomposites composed of ESO‐TPAn and regenerated cellulose (lyocell) fabric were prepared by compression molding method. The tensile strength of ESO‐TPAn/lyocell composites increased with increasing fiber content. The tensile strength and modulus of ESO‐TPAn/lyocell composite with fiber content 75 wt % were 65 MPa and 2.3 GPa, which were three times higher than those of ESO‐TPAn. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A series of nanocomposite scaffolds of poly(?‐caprolactone) (PCL) and starch with a range of porosity from 50 to 90% were fabricated with a solvent‐casting/salt‐leaching technique, and their physical and mechanical properties were investigated. X‐ray diffraction patterns and Fourier transform infrared spectra confirmed the presence of the characteristic peaks of PCL in the fabricated scaffolds. Microstructure studies of the scaffolds revealed a uniform pore morphology and structure in all of the samples. The experimental measurements showed that the average contact angle of the PCL/starch composite was 88.05 ± 1.77°. All of the samples exhibited compressive stress/strain curves similar to those of polymeric foams. The samples with 50, 60, 70, and 80 wt % salt showed compressive‐load‐resisting capabilities in the range of human cancellous bone. With increasing porosity, a significant decrease in the mechanical properties of the scaffolds was observed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43523.  相似文献   

19.
In this article, a series of diblock copolymer polyethylene‐b‐ poly(ethylene glycol)s (PE‐b‐PEGs) with various molecular weight of polyethylene segment was blended with linear low‐density PE. The PE/PE‐b‐PEG blend porous membranes with high porosity were obtained by thermally induced phase separation (TIPS) process. The isothermal crystallization kinetics of PE/LP/PE‐b‐PEG blends indicated that the introduction of PE‐b‐PEG could inhibit the growth rate of polyethylene crystals which could increase the pore size and porosity of the membranes. The PE/PE‐b‐PEG blend membranes with PE1300‐b‐PEG2200 showed the largest pore size and porosity due to its crystallization behavior during TIPS. The surface of the membranes became smoother and the morphology of the membranes could be effectively tuned by introducing PE‐b‐PEG. Compared with the PE membrane, the PE/PE‐b‐PEG blend membranes exhibited higher hydrophilicity (the water contact angle decreased from 112° to 84°), water permeability (the permeation flux increased from 80 to 440 L/m2 h under 0.1 MPa), rejection performance (completely reject carbon particles in the filtration of carbon ink solution), and fouling resistance (the value of protein adsorption dropped from 0.25 to 0.05 mg/cm2). The hydrophilicity and fouling resistance of PE/PE‐b‐PEG blend membranes increased as the length of PE segment in PE‐b‐PEGs decreased. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46499.  相似文献   

20.
《Ceramics International》2019,45(15):18672-18682
Nanofibrous zirconia (ZrO2) meshes were prepared from precursor fibers which were synthesized using the method of free-surface, high-yield alternating field electrospinning (AFES). The weight ratio of zirconyl chloride salt to polyvinylpyrrolidone (PVP) polymer in liquid precursors was investigated for its effect on the spinnability and formation of precursor fibers as well as on the resulting fibrous ZrO2. The precursor fiber generation measured at a rate up to 5.6 g/h was achieved with a single flat 25-mm diameter alternating current (AC) electrode, which corresponded to production of up to 1.5 g/h of fibrous ZrO2. The calcination process involved annealing the fibers at temperatures which ranged from 600 °C to 1000 °C and produced 0.1–0.2 mm thick fibrous ZrO2 meshes. Individual nanofibers were found to have diameters between 50 and 350 nm and either a tetragonal (t-ZrO2) or monoclinic (t-ZrO2) structure depending on the calcination temperature. The annealed meshes with total porosity between 98.0 ± 0.2% and 94.6 ± 0.2% showed little deformation or cracking. Tensile strength and modulus of fibrous t-ZrO2 meshes strongly depended on porosity and varied from 0.07 ± 0.03 MPa to 1.05 ± 0.3 MPa and from 90 ± 40 MPa to 388 ± 20 MPa, respectively. The m-ZrO2 meshes resulted similar moduli, but much lower strengths due to their brittleness. A power-law relationship between the elastic modulus and porosity of AFES-derived nanofibrous t-ZrO2 meshes, in comparison with other porous zirconia materials, was also investigated. The results of this study have demonstrated the feasibility of free-surface AFES in sizeable production of zirconia nanofibers and highly porous nanofibrous ceramic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号