首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The feasibility of active flow control, via arrays of synthetic jet actuators, to mitigate hysteresis was investigated experimentally on a dynamically pitching finite span S809 blade. In the present work, a six‐component load cell was used to measure the unsteady lift, drag and pitching moment. Stereoscopic Particle Image Velocimetry (SPIV) measurements were also performed to understand the effects of synthetic jets on flow separation during dynamic pitch and to correlate these effects with the forces and moment measurements. It was shown that active flow control could significantly reduce the hysteresis in lift, drag and pitching moment coefficients during dynamic pitching conditions. This effect was further enhanced when the synthetic jets were pulsed modulated. Furthermore, additional reduction in the unsteady load oscillations can be observed in post‐stall conditions during dynamic motions. This reduction in the unsteady aerodynamic loading can potentially lead to prolonged life of wind turbine blades. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Wind tunnel experiments were conducted at Rensselaer Polytechnic Institute's Center for Flow Physics and Control's subsonic wind tunnel, which experimentally quantified the aerodynamic performance of the S817 airfoil. This study has two main thrusts: Experimentally evaluate common aerodynamic properties of the S817 airfoil, and develop flow control strategies using continuously actuated and pulse‐modulated synthetic jets for future field testing to show the reduction of unsteady loading and increased aerodynamic performance. Quasi‐2D and finite span 3D configurations were utilized, where integrated aerodynamic loading, surface pressure, and stereoscopic particle image velocimetry data were collected to quantify the overall aerodynamic performance and stall characteristics of this airfoil. Experiments showed that synthetic jets, located at x/c=0.35 and angled at 45° with respect to the surface, increased the lift curve slope by 3.8%, the maximum lift coefficient by 10.5%, increased the L/D by as much as 39% at high angles of attack and delayed the stall angle of attack by 3°. Global particle image velocimetry measurements quantified the flowfield and showed flow reattachment could be achieved at various angles of attack using flow control where the flow would otherwise be separated. Near field measurements of the synthetic jet orifice yielded insight as to how synthetic jets interact with the cross‐flow in the time‐ and phase‐averaged sense. For very high angles of attack, a pulsed modulation technique was implemented, demonstrating flow reattachment in scenarios where a sinusoidal synthetic jet actuation scheme was unable to reattach the flow, with the benefit of achieving this with lower energy consumption compared with sinusoidal actuation.  相似文献   

3.
风力机复杂运行环境使叶片常处于失速环境,导致翼型升力骤降,严重影响风力机气动性能.为改善翼型流动分离,延缓失速,对凹槽-襟翼对翼型动态失速特性作用效果开展研究,并利用计算流体力学方法分析不同折合频率与翼型厚度时凹槽-襟翼对翼型气动性能的影响.结果表明:俯仰振荡过程中,凹槽-襟翼可有效提升翼型吸力面流速,降低失速攻角下逆...  相似文献   

4.
Numerous experiments were conducted on an oscillating airfoil in a subsonic wind tunnel. The experiments involved measuring the surface pressure distribution when the model oscillated in two types of motion, pitch and plunge, at three different Reynolds numbers, 0.42, 0.63 and 0.84 million, and over a range of reduced frequencies, k = 0.03–0.09. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphasis was placed on the effects of different types of motion on the unsteady pressure distribution of the airfoil at pre‐stall, near‐stall and post‐stall conditions. It was found that variations of the pressure distribution and aerodynamic loads with angle of attack were strongly sensitive to the displacement, oscillation frequency and mean angle of attack. The width of the hysteresis loop, position of the ‘figure‐8 shape’ and slope of the pressure coefficient curve are influenced by both types of motion, pitch and plunge. The main difference between plunging and pitching motions is due to the presence of the pitch rate for the pitching motion case, which was absent in the plunging case. Pitch rate had the strongest influence on pressure data in the near‐stall and post‐stall conditions. The trend of increasing the width of the hysteresis loops of lift coefficients with changing reduced frequency was different in two motions in the pre‐stall and post‐stall regions. The aerodynamic damping was greater for the pitching case than for the plunging one at higher reduced frequencies due to the existence of the pitch rate in the pitching oscillation, which was reversed at lower reduced frequencies. In the near‐stall region, at higher reduced frequency, the dynamic stall angle for the pitching oscillation increased while for the plunging one the effect was minimal. Increasing the oscillation amplitude was more effective for the plunging motion than for the pitching one. The effects of surface grit roughness on the pressure signature for both types of motion were also investigated. Applying the surface roughness near the leading edge affected the performance of the airfoil significantly. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
在西北工业大学NF-3低速风洞二元实验段开展翼型俯仰振荡运动动态气动性能深入研究。实验模型为展向三段式测力模型,测力仅在模型中段进行以减小风洞侧壁干扰的影响。实验中采集模型的转动瞬态迎角、计算模型中段的惯性力和惯性力矩、并从天平采集数据中扣除以修正模型惯性对结果的影响。结果表明,迎角超过正向或负向静态失速迎角是升力系数和俯仰力矩系数产生大的迟滞环的必要条件。随着振荡缩减频率增大,动态失速会推迟,升力系数迟滞环增大,阻力系数增大,最大迎角附近的俯仰力矩系数减小。在迎角小于静态失速迎角或超过不大的迎角范围,随着缩减频率的增大,翼型振荡运动俯仰力矩系数上行时减小,下行时增大。随着振荡振幅的增大,翼型振荡运动动态升力系数和俯仰力矩系数的迟滞环增大。随着平均迎角的增大,翼型迎角更多地进入正向失速区,升力系数迟滞环增大,俯仰力矩系数最小值变小。雷诺数对升力系数、阻力系数和俯仰力矩系数迟滞环无明显影响;但是,在翼型模型下行过程,随着雷诺数的增大,升力恢复提前,同时迟滞环随雷诺数增大而减小。  相似文献   

6.
The present study is focused on modeling of dynamic stall behavior of a pitching airfoil. The deep stall regime is in particular considered. A model is proposed, which has a low implementation and computational complexity but yet is able to deal with different types of dynamic stall conditions, including those characterized by multiple vortex shedding at the airfoil leading edge. The proposed model is appraised against an extensive data set of experimental (α,CL) curves for NACA0012. The results of an existing widely used model, having comparable complexity, are also shown for comparison. The proposed model is able to well reproduce not only the classic curves of deep dynamic stall but also the curves characterized by lift oscillations at high angles of attack due to the shedding of multiple vortices. Furthermore, the model appears to be robust to variations of its parameters from the optimal values and of the airfoil geometry. Finally, the model is successfully implemented in a commercial CFD software and applied to the simulation of a vertical axis wind turbine within the actuator cylinder approach. The accuracy of the prediction of the turbine power coefficient in the whole rotation cycle is very good for the optimal working condition of the turbine, for which the model parameters were calibrated. Fairly good accuracy is also obtained in significantly different working conditions without any further calibration.  相似文献   

7.
A fast, efficient way to control loads on utility scale wind turbines is important for the growth of the wind industry. Microtabs and microjets are two Active Aerodynamic Load Control devices, which address this need. Both act perpendicular to the surface of the airfoil, and these actively controlled devices are used to mitigate changes in aerodynamic loading experienced by wind turbine rotors due to wind gusts, wind shear, or other atmospheric phenomena. This work explores the aerodynamic effects of microjets and then compares them to those of microtabs. Flow around an airfoil with an activated microjet at the trailing edge has been simulated using the Reynolds‐averaged Navier–Stokes solver OVERFLOW‐2. Using a Chimera overset grid topology, a microjet has been placed near the trailing edge of the lower surface of a NACA 0012 airfoil. For a jet velocity about half of the freestream velocity, the microjet can change the lift up to ΔCL = 0.2, but the amount of change varies with the momentum coefficient of the jet. The change in lift is not symmetric for positive and negative angles of attack due to changes in the boundary layer thickness with angle of attack. Increasing the Reynolds number reduces the effectiveness of the microjet only slightly. The effects of jet velocity, jet activation time, and airfoil angle of attack on airfoil lift, drag, and pitching moment are compared with previous work, which illustrates the deployment of a microtab at the 95% chord location of a NACA 0012 airfoil. This study shows that microjets and microtabs have very similar responses in lift and pitching moment, but the drag for the microjet is noticeably lower. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds‐averaged Navier–Stokes solver, a viscous–inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady‐state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among the investigated methods at attached flow conditions, both for airfoil pitching and flap deflection. At high angles of attack, where flow separation is encountered, the methods still depict similar overall dynamics, but larger discrepancies are reported, especially for the simpler engineering method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper the effect of accelerated flow over a moving airfoil is considered and based on the flow field around the airfoil the dynamic stall is evaluated. In contrast to ordinary pitching motion, the dynamic stall evaluation in this study is performed with a different motion pattern, in which the airfoil has a heaving motion in one direction. This motion pattern is also similar to rotation of an element of blade in horizontal axis wind turbines (HAWTs). In present investigation, the Reynolds number is changed during simulation time and variations of this parameter from initial to final values are shown by acceleration parameter. The operating Reynolds number is more than 106, and a S809 airfoil is selected to move with accelerations of 1, 4 and 6 m/s2 in normal direction to free stream. To resolve accelerated flow filed in the two‐dimensional computational domain and to achieve results within a reasonable computation time, the unsteady Reynolds‐Averaged Navier–Stokes (URANS) equations are employed. The governing equations are discretized based on the finite volume approach and semi‐implicit method for pressure linked equations algorithm is used for pressure–velocity coupling. Furthermore, turbulence effect on flow field is accounted using shear stress transport (SST) k‐ω model. It is shown that the accelerated flow can significantly influence on the aerodynamic loads and dynamic stall trend. This study may introduce a new concept regarding dynamic stall and aerodynamic loads when the rotational acceleration is involved in HAWTs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
An aerodynamic load control concept termed “adaptive blowing” was successfully tested on a NACA 0018 airfoil model at Reynolds numbers ranging from 1.5·105 to 5·105. The global objective was to eliminate lift oscillations typically encountered on wind turbine blade sections. Depending on the jet momentum flux, steady blowing from a control slot in the leading-edge region can be utilized to either enhance or reduce lift by suppressing or inducing boundary layer separation respectively. Furthermore, high momentum blowing effectively eliminated the dynamic stall vortex during deep dynamic stall conditions. Based on these previous findings, the present work explores the feasibility of controlling unsteady aerodynamic loads by dynamically varying the jet momentum flux to compensate for transient changes of the inflow. Various scenarios including high amplitude pitching, rapid freestream oscillations and combinations of both were investigated in a custom-built unsteady wind tunnel facility. An iterative control algorithm was implemented which successfully identified the momentum coefficient time profiles required to minimize the lift excursions. The combination of fully suppressing dynamic stall and dynamically adjusting the lift coefficient provided an unprecedented control authority, producing virtually constant phase averaged lift in all cases.  相似文献   

11.
基于翼型参数化方法对翼型S809进行两类不同的前缘修改,采用翼型设计分析软件Xfoil对修改前、后的翼型进行气动性能计算分析,并采用计算流体力学(CFD)数值模拟方法进行流场特性分析。结果表明:翼型前缘下弯使得翼型在失速区升力系数增大,阻力系数减小,俯仰力矩系数减小,转捩现象延迟,翼型前缘上弯对气动性能的影响与之相反;翼型前缘上弯和下弯使得翼型表面压力系数分布均匀,吸力面及压力面压力系数增大;翼型前缘下弯能够抑制流动分离,抑制涡的形成,延迟翼型失速,翼型前缘上弯对翼型流场特性的影响则与之相反。  相似文献   

12.
Long Wang  Yuqin Jiao  Yongwei Gao 《风能》2015,18(8):1487-1500
Wind tunnel corrections are investigated for two‐dimensional low‐speed wind tunnel tests that are performed for three similar airfoils for angles of attack ranging from ?180° to 180° at Re = 0.75 × 106. Aided by the Blasius theorem, wind tunnel corrections are deduced for the lift, drag and pitching moment of the airfoil at high angles of attack. The wall pressure signature method is applied to determine the strengths of the equivalent singularities. The tunnel wall‐induced force and pitching moment are obtained by calculating the force and moment exerted on the equivalent singularities. The maximum correction for drag is determined to be about 50%. The corrected forces and pitching moments for three similar airfoils are coincident with one another. A method to determine an optimum singularities distribution range is presented. The results indicate that the correction method in the paper is effective for airfoil testing at high angles of attack. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an investigation of two well‐known aerodynamic phenomena, rotational augmentation and dynamic stall, together in the inboard parts of wind turbine blades. This analysis is carried out using the following: (1) the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark's in‐house flow solver Ellipsys3D; and (3) data from a reduced order dynamic stall model that uses rotationally augmented steady‐state polars obtained from steady Phase VI experimental sequences, instead of the traditional two‐dimensional, non‐rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared with three select cases of the N‐sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two‐dimensional flow to be investigated. Results indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current two‐dimensional dynamic stall model as used in blade element momentum‐based aeroelastic codes may provide a reasonably accurate representation of three‐dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
文章通过水槽实验研究了直叶片在静态以及动态效应下的水动力特性。研究结果表明:在静态分析情况下,在来流加、减速过程中,直叶片的升、阻力系数的变化趋势相同;在动态分析情况下,当来流速度一定,电机转速不同时,直叶片的升、阻力系数在不同转速下的变化趋势基本相同;当电机转速一定,来流速度不同时,来流速度对叶片水动力性能的影响具有一致性;与静态分析相比,翼型的动态失速角大于静态失速角,失速延迟现象较为明显。实验结果可为直叶片动态失速现象的研究提供一定的参考价值。  相似文献   

15.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

16.
A 2D vortex panel model with a viscous boundary layer formulation has been developed for the numerical simulation of a vertical axis wind turbine (VAWT), including the operation in dynamic stall. The model uses the ‘double wake’ concept to reproduce the main features of the unsteady separated flow, including the formation and shedding of strong vortical structures and the wake–blade interaction. The potential flow equations are solved together with the integral boundary layer equations by using a semi‐inverse iterative algorithm. A new criterion for the reattachment of the boundary layer during the downstroke of a dynamically stalled aerofoil is implemented. The model has been validated against experimental data of steady aerofoils and pitching aerofoils in dynamic stall at high and low Reynolds numbers (Re = 1.5 × 106 and Re = 5 × 104). For the low Reynolds number case, time‐resolved 2D particle image velocimetry (PIV) measurements have been performed on a pitching NACA 0012 aerofoil in dynamic stall. The PIV vorticity fields past the oscillating aerofoil are used to test the model capability of capturing the formation, growth and release of the strong leading edge vortex that characterizes the dynamic stall. Furthermore, the forces extracted from the PIV velocity fields are compared with the predicted ones for a quantitative validation of the model. Finally, the model is applied to the computation of the wake flow past a VAWT in dynamic stall; the predicted vorticity fields and forces are in good agreement with phase‐locked PIV data and CFD‐DES available in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
An analysis of dynamic stall for the S809 aerofoil has been performed in conjunction with the Leishman–Beddoes dynamic stall model that was modified for wind turbine applications. Numerical predictions of the lift, drag and pitching moment coefficients were compared with measurements obtained for an oscillating S809 aerofoil at various reduced frequencies, mean angles of attack and angle of attack amplitudes. It was found that the results using the modified model were in good agreement with the experimental data. Hysteresis in the aerodynamic coefficients was captured well, although the drag coefficient was slightly underpredicted in the deep stall flow regime. Validation against the experimental data showed overall good agreement. The mathematical structure of the model is such that it can be readily incorporated into a comprehensive analysis code for a wind turbine. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The S809 airfoil dynamic characteristics, which are based on the airfoil dynamic tests at the University of Glasgow, are presented in this paper. The airfoil tests include static, ramp‐type (ramp‐up and ramp‐down) and oscillatory motions at Reynolds numbers of 1.0 × 106 and 1.5 × 106 with and without the sand‐tripped leading edge. This study aimed to explore the unsteady aerodynamic features of the S809 airfoil, such as the progression of separation from leading edge to trailing edge, the large trailing edge separation before stalling, the stall onset inception and the re‐attachment convection, and to provide some useful data for tuning/refining the semi‐empirical dynamic stall (DS) models, such as the Leishman–Beddoes DS model or its variations. Experimental results show that the S809 airfoil has a complicated DS process that renders this airfoil a challenge for any modeller of the unsteady airloads. The leading‐edge roughness has small effect on the static features, but significantly invokes earlier stall onset inception under dynamic conditions, while has small influence on the convective phase of the re‐establishment of fully attached flow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
20.
风力机叶片动态失速时的非定常气动特性及严重的迟滞现象使得风力机功率实测值严重偏离其静态预测值。鉴于此,基于Theodorsen理论、基尔霍夫势流理论,在忽略低阶附加质量引起的下洗气流加速度项及状态变量转换后,提出一种包括翼型附着流和后缘动态分离流的新型动态失速模型。利用该模型分析NREL 5 MW海上风力机叶片6种翼型的非定常动态失速特性得出:通过翼型的气流在完全附着流与完全分离流之间不断转换,受附着流脱落尾诱导的动态下洗气流影响及边界层动态分离产生的压力滞后的双重作用,动态升力系数变化曲线和静态升力现象曲线偏差较大,6种翼型动态升力系数变化曲线均呈非常明显的迟滞环现象。DU40、DU35、DU30、DU25、DU21和NACA64这6种翼型动态升力系数增幅明显,分别达17.6%、60.9%、60.7%、55.1%、63.7%和40.8%。动态失速攻角极大地超过静态失速攻角,分别增大到36.53°、21.40°、20.20°、17.68°、16.97°和21.42°。6种翼型动态失速预测结果与公开实验数据结论一致,证实所提出的动态失速气动模型计算结果准确可信,具有较强通用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号