首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The efficient separation and recovery of oil from water‐in‐oil emulsion poses a great challenge because of the rapid development of the petrochemical industry throughout the world. In this study, a facile method to develop a ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency oil/water separation was investigated. The electrospun PVDF/ZnO membrane was made, on which ZIF‐8 crystal seeds were then created with the revitalizing step and expanded in the growth step, and finally functionalized hierarchical micronanofiber PVDF‐g‐ZIF‐8 membrane was obtained. Results showed that oleophilic ZIF‐8 crystals on the surface of PVDF membrane dramatically increased the wettability of oil and tuned PVDF membrane from olephobicity to oleophilicity. The hydrophobic/lipophilic PVDF‐g‐ZIF‐8 membrane with a water contact angle up to 158° and a toluene contact angle down to 0° provides its separation efficiency for water‐in‐oil emulsion of 92.93% in an environmentally friendly and energy‐saving manner. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46462.  相似文献   

2.
The fabrication of high‐performance oil sorbents is of great significance for oil spill cleanup. The main objective of this study was to prepare open‐cell polypropylene/polyolefin elastomer (PP/POE) blend foams for fabrication of reusable sorbents for oil sorption. Open‐cell PP/POE blend foams were prepared via continuous‐extrusion foaming using supercritical carbon dioxide as the blowing agent. The interconnected open‐cell structure was characterized by scanning electron microscopy. The hydrophobicity and lipophilicity of PP/POE open‐cell foams were revealed by tests of contact‐angle measurement, water and cyclohexane sorption on the foam surface, CCl4 and cyclohexane sorption in water, and oil/water separation. Further, the sorption tests indicated that PP/POE blend foams showed larger oil‐uptake capacities than pure PP foams. In addition, cyclic compression tests showed that PP/POE open‐cell foams had excellent ductility and significantly improved recoverability compared to pure PP foams. In cyclic sorption–desorption tests, the sorption kinetics was studied in terms of capacity and saturation time, showing that PP/POE foams kept larger sorption capacities for 10 cycles, with larger sorption rates and good reusability. Based on the high open‐cell content, the good hydrophobic and oleophilic properties, the high oil‐sorption capacity, the improved recoverability, the large sorption rate, and the good reusability in cyclic oil‐sorption performance, the PP/POE open‐cell foams have shown promise as potential oil sorbents in applications for oil spill cleanup. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43812.  相似文献   

3.
Absorption is an effective method to collect oil spills and solvent leakages from water. However, the currently used oil absorbents are still suffering from high cost, tedious preparation, and low recyclability. In this work, we report an extremely simple and low‐cost strategy to produce oil absorbents by directly coupling alkoxysilane onto the surface of polyurethane (PU) foams. Such direct silanization renders the initially amphiphilic foams a strong hydrophobicity and consequently a water‐repelling and oil‐absorptive functionality. The silanized foams exhibit highest absorption capacities as well as best recyclability among all PU‐based oil absorbents. More practically, the silanized PU foams can be used to recover crude oil spills with an absorption capacity of higher than 75 times of their own weight, and maintain 90% of the initial absorption capacity after eight times reusage. Interestingly, we invent portable oil suckers for continuous oil absorption from water by filling vacuum cleaners with the silanized foams. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2232–2240, 2017  相似文献   

4.
Oil spills and organic chemical leakage have caused serious environmental problems, calling for highly effective adsorbents at low cost. Superelastic and hydrophobic-oleophilic modified melamine foams with ultralow amounts of well-dispersed graphene were prepared via dip-coating. The composite foams showed high selectivity for adsorbing various organic chemicals from water and could be regenerated easily. Moreover, excellent adsorption capacity ranging from 80 to 170 times its own weight was found depending on the density of organic chemicals. These coated foams show great potential for continuous oil/water separation and oil fume removal.  相似文献   

5.
Conducting poly(styrene‐co‐divinylbenzene)/polypyrrole (PPy) polyHIPE (polymerized high internal phase emulsion) composite foams were synthesized via chemical oxidative polymerization method. The effect of solvent and dopant type on the surface morphology and electrical conductivity of composite foams has been investigated. SEM micrographs showed that the morphology of PPy thin film on the internal surface of poly(styrene/divinylbenzene) (poly(St‐co‐DVB) polyHIPE support foam strongly depends on the solvent and dopant type used. Incorporation of dodecylbenzene solfunic acid‐sodium salt (DBSNa) as a dopant in chloroform solvent resulted in formation of a PPy thin film with higher molecular compact structure and electrical conductivity on the support foam as compared to other solvents and another dopant used. Fourier‐transform infrared spectroscopy was used to correlate the electrical conductivity of composite foams to their PPy structural parameters. As expected, the extended conjugation length of PPy in the presence of DBSNa dopant is the main reason for higher electrical conductivity of resultant composite foam. Electrical conductivity measurements revealed that the chemical aging of various conducting foams follows the first‐order kinetic model, which is a representative of a reaction‐controlled aging mechanism. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Imidazolate framework ZIF‐8 is modified via postsynthetic method using etheylenediamine to improve its adsorption performance toward CO2. Results show that the BET surface area of the modified ZIF‐8 (ED‐ZIF‐8) increases by 39%, and its adsorption capacity of CO2 per surface area is almost two times of that on ZIF‐8 at 298 K and 25 bar. H2O uptake on the ED‐ZIF‐8 become obviously lower compared to the ZIF‐8. The ED‐ZIF‐8 selectivity for CO2/N2 adsorption gets significantly improved, and is up to 23 and 13.9 separately at 0.1 and 0.5 bar, being almost twice of those of the ZIF‐8. The isosteric heat of CO2 adsorption (Qst) on the ED‐ZIF‐8 becomes higher, while Qst of N2 gets slightly lower compared to those on the ZIF‐8 Furthermore, it suggests that the postsynthetic modification of the ZIF‐8 not only improves its adsorption capacity of CO2 greatly, but also enhances its adsorption selectivity for CO2/N2/H2O significantly. ©2013 American Institute of Chemical Engineers AIChE J, 59: 2195–2206, 2013  相似文献   

7.
In this study, a highly porous and interconnected foam structure was fabricated using compression molding combined with particulate‐leaching technique. The foamed structures were fabricated with polylactide (PLA) and polyethylene glycol (PEG) with salt as the particulate. The pore size of the foam structure is controlled by the particulates size and higher interconnectivity is achieved by the co‐continuous blending morphology of the PLA matrix with the water‐soluble PEG. PLA is a fully bio‐based thermoplastic polymer and is derived from renewable resources, such as cornstarch or sugarcanes. PEG is also fully biodegradable polymer produced from ethylene. Fabricated foams were characterized for cellular, acoustic, and mechanical properties. The acoustic performance of the foams was studied by measuring the normal incident absorption coefficient in accordance with the ASTM E1050 standard. The results show open porosity as high as 88% was achieved and the effect of water‐soluble polymer on cellular properties and acoustic and mechanical performance of the foams was studied. As a result of the secondary porous structure formed into cell walls by water soluble polymer, the overall absorption of fabricated PLA foams was increased to above 90% while the average absorption of the foams remained unchanged. In addition, the resulting acoustic foams are benign and environmentally friendly. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39518.  相似文献   

8.
研究了均苯四甲酸二酐(PMDA)添加量、发泡温度和压力降对聚对苯二甲酸乙二醇酯(PET)开孔泡沫形成的影响。研究发现,当发泡温度为216℃,PMDA添加量为0.6份,压力降较高时,可以制备发泡倍率35倍、开孔率96.3%的PET开孔泡沫。将聚四氟乙烯(PTFE)和有机改性蒙脱土(MMT)引入PET开孔泡沫的制备,研究发现PTFE和MMT具有异相成核作用,减小了泡孔尺寸,拓宽了PET开孔发泡窗口温度,在(222~228℃)较宽的发泡温度窗口范围内成功制备了泡孔尺寸更小(10~100μm)、发泡倍率高达40倍的PET开孔泡沫。开孔泡沫可吸收汽油、柴油、煤油、轻质原油和重质原油等各种石油产品,本文对高开孔率开孔泡沫的吸油性能进行了研究,其吸收能力约为8~30 g/g。  相似文献   

9.
In order to obtain foams possessing flexibility and at the same time heat insulation under high hydrostatic pressure, composite foams with spherical rigid foams filled in flexible rubber foam at certain intervals were prepared and their thermal conductivity and flexural rigidity were studied. The following points were found: (1) With a unit model having a spherical rigid foam in the middle, the thermal conduction of a composite foam was analyzed under the conditions of steady one-dimensional heat flow. Theoretical equations giving overall coefficients of heat transmission under atmospheric and hydrostatic pressures were obtained, and the adequacy of these theoretical equations was confirmed by the measurement of overall coefficients of heat transmission of composite foams in an apparatus so constructed as to allow heat conduction experiments under pressures ranging from atmospheric to the hydrostatic pressure corresponding to 100-m depth in water. (2) The effect of the filled spherical rigid foams on heat insulation is notable under hydrostatic pressures corresponding to a 20-m depth or more in water. Under the hydrostatic pressure corresponding to a 100-m depth in water, the coefficient of heat insulation of the most closely filled composite foam used in the experiment was approximately 35% larger than that of the unfilled foam, while the theoretical most closely filled composite foam gives an approximately 110% increase. (3) Under the hydrostatic pressure corresponding to a 100-m depth in water, the flexural rigidity of the most closely filled composite foam used in the experiment was approximately one half that of an unfilled foam of the same heat insulating property.  相似文献   

10.
Superhydrophobic composite nanofibrous membranes(PP) were prepared from polycaprolactone (PCL)/polystyrene (PS) through solution blow spinning with an airbrush for oil adsorption. PP membranes were characterized by fourier transform infrared spectroscopy, scanning electron microscopy, water contact angle, X‐ray Photoelectron Spectroscopy, X‐ray diffractometer, and thermogravimetric analysis instrument. The effects of mass ratio of PCL and PS on the morphology, porosity, density, cyrstallinity, thermal stability, and oil adsorption ability were investigated. PP membranes had higher density than PCL and PS, while better hydrophobicity. The saturation adsorption capacity of PP to peanut oil, motor oil, and diesel oil is 16.89 g/g, 20.33 g/g, and 12.17 g/g, respectively. After 6 cycles of reutilization, the adsorption capacity to peanut oil, motor oil, and diesel oil remained at 6.16, 7.46, and 5.33 g/g, respectively, higher than that of pure PCL membrane.The water/oil adsorption selectivity of PP was about 7:100. PP had higher oil adsorption capacities and better water/oil adsorption selectivity than the commercial oil absorbent polypropylene. PP membrane could be prepared and used in situ to separate oil from oil/water mixture. POLYM. ENG. SCI., 59:E171–E181, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
This article introduces the preparation of rigid polyurethane foam (PUF) and studies the effect of various mass percentages of sodium polyacrylate (PAAS, microsized) on PUF hydrophilicity. The characterization of PUF (with 0–5.5 wt % PAAS) was conducted via scanning electron microscopy, contact angle analysis, differential scanning calorimetry, and pore size distribution. All modified foams showed an improvement in their water sorption and water maintenance capacities, and the PU foam content of 5.5 wt % PAAS showed a water absorption of 891%, and the water retention performance was 408% (96 h) compared to the pure PU foam. Through contact angle measurements, the relationship between the hydrophilicity of the modified foams and PAAS content was investigated. The compression strength of the samples was also tested. When the PAAS is 2.6 wt %, the compression strength of the composites decreased about 50% compared with the pure PU foam. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46702.  相似文献   

12.
This study shows the development of new polymeric open‐cell foams from polypropylene (PP) and polylactide (PLA) resins with a focus on sound absorption properties and modeling of these foams. The objective is to develop new environmentally friendly foams to replace the existing non‐recyclable Polyurethane foams are currently used for sound insulation in industry. Through this research, open‐cell foams of about 90% porosity were fabricated from PP and PLA. These resins were selected since PP is a recyclable thermoplastic polymer, and PLA is a bio‐based thermoplastic polymer made from renewable resources. Polyurethane (PU) foam which is currently used for sound absorption and noise control in industry was compared to the fabricated PP and PLA foams. As the first attempt to fabricate environmentally friendly acoustic foams, the resulting foam structures show improved properties as compared to the existing materials. The average absorption of PP and PLA foams fabricated is in the range of 0.42–0.55 which is comparable or even higher than the average absorption of PU foam. To better understand the effect of structural and material properties on sound absorption and further improve the acoustic performance of bio‐based foams, an analytical model based on Johnson–Champoux–Allard model was used to numerically simulate the acoustic performance of foams under study. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
以生物质基粗甘油为主要原料,采用一锅法合成粗甘油基多元醇,进一步发泡制备了聚氨酯泡沫材料。在此基础上,利用甲基三氯硅烷对泡沫材料进行疏水改性,制备出改性聚氨酯吸油材料。采用傅里叶红外光谱仪、扫描电镜和热重分析对改性前后泡沫的结构形貌、热稳定性和接触角进行表征,测试了改性聚氨酯吸油材料吸油性能。结果表明:经疏水改性后在泡沫表面合成了聚硅氧烷,水接触角由130°增大至140°,提高了吸油材料疏水性能。改性聚氨酯吸油材料对乙醇、甲醇、氯仿等8种有机物的吸附量范围为16.7~45.2 g/g。经循环使用50次后,吸油材料对柴油和大豆油的吸附量分别为最高吸附量的95.8%和97.6%,表现出优异的吸油性能。  相似文献   

14.
A dry starch–oil composite was blended with each of three glycols; ethylene, polyethylene, and propylene, and then reacted with isocyanate to produce polyurethane foams. The liquid glycols permitted the dry composite to blend well with the other ingredients in the foam formulations. Infrared spectra confirmed the presence of urethane structures in the composite–glycol foams. Polyethylene glycol provided a slightly less dense foam than the other glycols in the composite–glycol products. Microscopy showed a greater number of larger cells in the composite–polyurethane glycol foams. Infrared spectra indicated essentially no qualitative differences in the composite–glycol foams with the three glycols. By prestaining starch with toluidene blue and oil with sudan red, the location of the starch and oil components of the milled composite were observed in the composite–propylene glycol foam. Intact flakes of the composite were observed in the foam. An apparent loss of mobility of oil in the composite–polyurethane foam, as evidenced by NMR analysis, is probably due to crosslinking by isocyanate diffusing into the flakes. Both the cell structure and uniformity of blending were improved by using these glycols rather than the polyester polyol described previously. J Appl Polym Sci 69: 957–964, 1998. Published 1998 John Wiley & Sons, Inc.  相似文献   

15.
To reduce environmental pollution and oil shortages, biodegradable polylactide (PLA) from plants was used to replace synthetic plastic from petroleum. In this study, high‐melt‐viscosity PLA was achieved through the in situ reaction of carboxyl‐ended polyester (CP) and solid epoxy (SE) first; then, PLA foams were successfully prepared by a chemical compression‐molding method. The detailed foaming factors were also studied, including the decomposition temperature of the blowing agent, the foam temperature, and the open‐mold temperature. The results reveal that the obtained PLA foams had good water absorption and degradable properties, and the foam density was low as 0.16 g/cm3. Moreover, the effects of the CP/SE concentration and the AC content on the properties of the foams were also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014  相似文献   

17.
Bio-based polyurethane (PU) foam, different from traditional PU foam, is a new green environmental acoustic material. It can be used in the field of automobiles. In this work, a new tung oleic acid-based composite PU (TOAPU) foam was prepared using tung oleic acid-based polyol and polyether polyols 3630. It is important to optimize the formulation of TOAPU foam for better acoustic performance. The effect of each component on the acoustic performance of TOAPU is ordered by screening test. A1, silicone, and A33, the three components that have the greatest impact on the acoustic performance of TOAPU, are used as variables. The response surface method is used to create the model of the effects of different components on the acoustic properties of TOAPU. The model was optimized by using nondominated sorting genetic algorithm II method. The optimized acoustic performance property of TOAPU foams was synthesized by adding 0.27 g of A1, 1.03 g of A33, and 2.81 g of silicone oil. The experimental results show that the mean sound absorption coefficient and transmission loss can reach 0.515 and 21.389 dB. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47861.  相似文献   

18.
Carbon fiber/polypropylene composite foams were prepared by microcellular injection molding using nitrogen as a foaming agent. The effects of nitrogen content, injection speed, and CF content on the morphology and tensile properties of the composite foams were investigated. A three‐layer structure was formed in the microcellular foams: the skin layer was solid, the intermediate layer contained stretched cells parallel to the flow direction, and the core layer consisted of spherical cells. The average cell diameter of the machine direction decreased from 41 to 34 μm as the nitrogen content increased from 0.5 to 1 wt%, increased from 34 to 43 μm as the injection speed increased from 50 to 150 mm/s, and decreased from 34 to 25 μm as the CF content increased from 10 to 30 wt%. Thus, the microcellular structure was improved by increasing the nitrogen and CF content and by decreasing the injection speed. Furthermore, when the CF content increased from 10 to 30 wt%, the Young's modulus of the solids and foams increased by 78% and 113%, respectively. Thus, the Young's modulus of the foams improved by 35% due to the improvement in the cellular structure. POLYM. ENG. SCI., 59:1371–1380 2019. © 2019 Society of Plastics Engineers  相似文献   

19.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   

20.
The production of a new lightweight composite material based on polyurethane and Portland cement was investigated. The composite was obtained by the mixture of polyurethane foam precursors with different amounts of cement and water. To allow cement hydration, samples were aged in water and characterized through scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, and compressive testing. We studied the cement hydration reactions and the effect of the organic phase on hydration by determining the amount of chemically bonded water by calcination. The results showed that the amount of water affected the morphology and porosity of the foams and thereby affected the cement hydration reaction. Furthermore, the mechanical properties of the hybrid composite varied in a wide range, depending on the cement and water contents and on whether the hydrated cement particles behaved as fillers or were allowed to interact to form stronger inorganic networks within the polymeric matrix forming the bubble walls. The polyurethane–cement composite foams showed an increase in the stiffness and the yield strength. In addition, the ductile behavior of the polymeric foams was preserved, even at high filler loadings, due to the chemical compatibility between the hydroxyl groups of the polyol and the cement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号