共查询到20条相似文献,搜索用时 10 毫秒
1.
Hosoo Kim David C. Miller Srinivasarao Modekurti Benjamin Omell Debangsu Bhattacharyya Stephen E. Zitney 《American Institute of Chemical Engineers》2016,62(11):3899-3914
A mathematical model for a moving bed reactor with embedded heat exchanger has been developed for application to solid sorbent‐based capture of carbon dioxide from flue gas emitted by coal‐fired power plants. The reactor model is one‐dimensional, non‐isothermal, and pressure‐driven. The two‐phase (gas and solids) model includes rigorous kinetics and heat and mass transfer between the two phases. Flow characteristics of the gas and solids in the moving bed are obtained by analogy with correlations for fixed and fluidized bed systems. From the steady‐state perspective, this work presents the impact of key design variables that can be used for optimization. From the dynamic perspective, the article shows transient profiles of key outputs that should be taken into account while designing an effective control system. In addition, the article also presents performance of a model predictive controller for the moving bed regenerator under process constraints. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3899–3914, 2016 相似文献
2.
Modeling of circulating fluidized beds systems for post‐combustion CO2 capture via temperature swing adsorption 下载免费PDF全文
Stefano E. Zanco Marco Mazzotti Matteo Gazzani Matteo C. Romano Isabel Martínez 《American Institute of Chemical Engineers》2018,64(5):1744-1759
The technology of circulating fluidized beds (CFBs) is applied to temperature swing adsorption (TSA) processes for post‐combustion CO2 capture employing a commercial zeolite sorbent. Steady state operation is simulated through a one‐dimensional model, which combines binary adsorption with the CFB dynamics. Both single step and multi‐step arrangements are investigated. Extensive sensitivity analyses are performed varying the operating conditions, in order to assess the influence of the main operational parameters. The results reveal a neat superiority of multi‐step configurations over the standard one, in terms of both separation performance and efficiency. Compared to fixed‐bed TSA systems, CFB TSA features a high compactness degree. However, product purity levels are limited compared to the best performing fixed‐bed processes, and heat management within the system appears to be a major issue. As regards energy efficiency, CFB systems place themselves in between the most established absorption‐based technologies and the fixed‐bed TSA. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1744–1759, 2018 相似文献
3.
In this study, multiphase Eulerian computational fluid dynamics (CFD) modelling is developed to predict the hydrodynamics, mass transfer, and chemical absorption of CO2 using a monoethanolamine (MEA) solution in a structured packed column. First, the hydrodynamic simulation of liquid dispersion in a structured packed bed using a two-dimensional CFD is performed. The simulation results of the radial distribution of the liquid holdup are compared with the literature experimental data. The model prediction matches the experimental data at the top position of the column, whereas a slight deviation is found at the bottom position of the column. Using a validated CFD model, the reactive mass transfer is modelled to study CO2 capture in a structured packed column with Mellapak 500.X. The model results are compared to the literature experimental results of CO2 mole fractions along the height of the column. It is found that the model results match the experimental findings. Furthermore, CFD modelling is extended to investigate the influence of operating conditions such as gas and liquid velocities on CO2 removal efficiency. The present CFD model demonstrates the porous media approach for reactive absorption of CO2 in a structural packed bed. 相似文献
4.
5.
6.
Munendra Pal Singh Ahmed Mongy Alatyar Abdallah Sofiane Berrouk Muhammad Saeed 《加拿大化工杂志》2023,101(11):6170-6202
Over the last decades, renewable and clean energy sources are being rigorously adopted along with carbon capture technologies to tackle the increasing carbon dioxide (CO2) concentration level in the environment. CO2 capture is a quintessential option for tackling global warming issues. In this context, the present paper has reviewed the process intensification equipment called a rotating packed bed (RPB), which is highly industry applicable due to high gravity (HiGee) force. This facilitates strong mass transfer characteristics, a compact design, and low energy consumption. In this review, the current research scenario of RPBs using numerical, computational fluid dynamics (CFD), and mathematical modelling, along with different machine learning approaches in the CO2 capture process, has been reviewed. The different geometry designs, hydrodynamic characteristics, performance parameters, research methods, and their effects on CO2 removal efficiency have been discussed. Furthermore, the latest experimental studies are also summarized, especially in the absorption and adsorption domain. Finally, recommendations have been given to support the RPBs in different industrial and commercial applications of CO2 removal. 相似文献
7.
In this work, the effect of vapor load and initial feed concentrations on column efficiency and liquid hold‐up in a two‐ and three‐phase packed distillation column at total reflux was investigated. Results for the two investigated mixtures (n‐heptane, n‐hexane, water) and (ethyl acetate, 1‐butanol, water) reveal that column efficiency remains almost constant for the former mixture but changes significantly for the latter. Specific liquid hold‐up and water to organic‐phase volumetric ratio within the column affect the column efficiency due to variations in initial feed concentrations. Influence of vapor load on separation efficiency and specific liquid hold‐up is also studied. 相似文献
8.
Liang‐Liang Zhang Jie‐Xin Wang Zhi‐Ping Liu Ying Lu Guang‐Wen Chu Wen‐Chuan Wang Jian‐Feng Chen 《American Institute of Chemical Engineers》2013,59(8):2957-2965
A novel mass‐transfer intensified approach for CO2 capture with ionic liquids (ILs) using rotating packed bed (RPB) reactor was presented. This new approach combined the advantages of RPB as a high mass‐transfer intensification device for viscous system and IL as a novel, environmentally benign CO2 capture media with high thermal stability and extremely low volatility. Amino‐functionalized IL (2‐hydroxyethyl)‐trimethyl‐ammonium (S)?2‐pyrrolidinecarboxylic acid salt ([Choline][Pro]) was synthesized to perform experimental examination of CO2 capture by chemical absorption. In RPB, it took only 0.2 s to reach 0.2 mol CO2/mol IL at 293 K, indicating that RPB was kinetically favorable to absorption of CO2 in IL because of its efficient mass‐transfer intensification. The effects of operation parameters on CO2 removal efficiency and IL absorbent capacity were studied. In addition, a model based on penetration theory was proposed to explore the mechanism of gas–liquid mass transfer of ILs system in RPB. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2957–2965, 2013 相似文献
9.
N. Rodríguez M. Alonso J. C. Abanades 《American Institute of Chemical Engineers》2011,57(5):1356-1366
Calcium looping processes for capturing CO2 from large emissions sources are based on the use of CaO particles as sorbent in circulating fluidized‐bed (CFB) reactors. A continuous flow of CaO from an oxyfired calciner is fed into the carbonator and a certain inventory of active CaO is expected to capture the CO2 in the flue gas. The circulation rate and the inventory of CaO determine the CO2 capture efficiency. Other parameters such as the average carrying capacity of the CaO circulating particles, the temperature, and the gas velocity must be taken into account. To investigate the effect of these variables on CO2 capture efficiency, we used a 6.5 m height CFB carbonator connected to a twin CFB calciner. Many stationary operating states were achieved using different operating conditions. The trends of CO2 capture efficiency measured are compared with those from a simple reactor model. This information may contribute to the future scaling up of the technology. © 2010 American Institute of Chemical Engineers AIChE J, 57: 000–000, 2011 相似文献
10.
低温固态胺吸收剂分离CO2是一种非常有潜力的CO2分离技术,利用双流化床反应器实现连续高效CO2分离是此技术走向应用的关键。以商业硅胶颗粒为载体,以聚乙烯亚胺(PEI)为活性成分,通过浸渍法制备固态胺吸收剂,采用双流化床作为反应器,连续分离气体中的CO2。实验结果表明,所采用的双流化床反应器能够实现两反应器间固态胺颗粒的连续稳定循环,长期连续分离CO2的效率为84.4%;吸收反应器通入约1%的水蒸气后,捕集效率提高到约97%。 相似文献
11.
An overview of technologies for fossil fuel‐fired power plants with drastically reduced CO2 emissions is given. Post‐combustion capture, pre‐combustion capture, and oxyfuel technology are introduced and compared. Current research results indicate that post‐combustion capture may lead to slightly higher losses in power plant efficiency than the two other technologies. However, retrofitting of existing plants with oxyfuel technology is complex and costly, and retrofitting of pre‐combustion capture is not possible. On the other hand, post‐combustion capture can be retrofitted to existing power plants with only minimal effort. Based on the mature technology of reactive absorption, it can be implemented on a large scale in the near future. Therefore, post‐combustion capture using reactive absorption is discussed here in some detail. 相似文献
12.
Yanying Wei Yanjie Wang Jun Tang Zhong Li Haihui Wang 《American Institute of Chemical Engineers》2013,59(10):3856-3862
CO2 capture via an oxy‐fuel route through the U‐shaped (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) hollow fiber membrane with 100% CH4 conversion and 100% CO2 selectivity for 450 h has been explored for the first time. X‐ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy characterizations of the spent hollow fiber membrane have also been investigated. All these results indicate that PLNCG hollow fiber membrane shows excellent reaction performance and good stability under oxy‐fuel reaction conditions, which will be a potential rounte for reducing CO2 emissions worldwide. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3856–3862, 2013 相似文献
13.
Balaji Shankaranarayanan 《分离科学与技术》2019,54(5):675-682
Anthocyanins are polyphenols, water-soluble pigments that have increased acceptability to food and pharmaceutical products. In this investigation, semi interpenetrating network hydrogel beads were developed to purify anthocyanins present in red cabbage. Effect of bead size and refluxing on anthocyanin purification and carbohydrates elimination were studied. Hydrogel bead with 1% gelatin, 5% sodium alginate, and 1% calcium chloride resulted in maximum two-fold increase in anthocyanin purity with 35 mg/g carbohydrate elimination. Further, hydrogel bead size and refluxing exhibited inversely proportional anthocyanin purity and carbohydrate elimination. Thereby, confirmed that anthocyanin purity is highly dependent on sugars. The results suggested that the developed hydrogel beads could be suitable for purifying bioactive compounds. 相似文献
14.
Coprecipitation and hydrolysis of CaO have been employed to produce Ca‐based synthetic sorbents suitable for capturing CO2 in a fluidized bed. Their composition, CO2 uptake, volume in small pores (2–200 nm) and resistance to attrition were measured and compared to those of limestone and dolomite. Sorbents produced by hydrolysis showed the highest uptake and resistance to attrition. After 20 cycles of carbonation and calcination, two sorbents exceeded the uptake of both limestone and dolomite, when subjected to the same regimes of reaction. A sorbent's uptake of CO2 was shown to be determined by the volume in pores narrower than ~200 nm. 相似文献
15.
Application of polyethylenimine‐impregnated solid adsorbents for direct capture of low‐concentration CO2 下载免费PDF全文
Jitong Wang Mei Wang Wencheng Li Wenming Qiao Donghui Long Licheng Ling 《American Institute of Chemical Engineers》2015,61(3):972-980
A systematic study of CO2 capture on the amine‐impregnated solid adsorbents is carried out at CO2 concentrations in the range of 400–5000 ppm, relating to the direct CO2 capture from atmospheric air. The commercially available polymethacrylate‐based HP2MGL and polyethylenimine are screened to be the suitable support and amine, respectively, for preparation of the adsorbent. The adsorbents exhibit an excellent saturation adsorption capacity of 1.96 mmol/g for 400 ppm CO2 and 2.13 mmol/g for 5000 ppm CO2. Moisture plays a promoting effect on CO2 adsorption but depends on the relative humidity. The presence of O2 would lead to the decrease of adsorption capacity but do not affect the cyclic performance. The diffusion additive is efficient to improve the adsorption capacity and cyclic performance. Moreover, the adsorbents can be easily regenerated under a mild temperature. This study may have a positive impact on the design of high‐performance adsorbents for CO2 capture from ambient air. © 2014 American Institute of Chemical Engineers AIChE J, 61: 972–980, 2015 相似文献
16.
17.
Chemical-looping combustion has emerged as a promising alternative technology, intrinsically integrating CO2 capture in power production. A novel reactor concept based on dynamically operated packed beds has been proposed [Noorman, S., van Sint Annaland, M., Kuipers, J.A.M., 2007. Packed bed reactor technology for chemical-looping combustion. Ind. Eng. Chem. Res. 46, 4212-4220] and in this work, packed bed chemical-looping combustion was investigated experimentally to provide an experimental proof-of-principle. Using information obtained from both the reduction and oxidation cycles, the measured maximum temperature rise and front velocities in the packed bed during the oxidation cycle corresponded very well with analytical expressions describing the system, especially when the contribution of the formation of carbon during the reduction cycle was taken into account. 相似文献
18.
流化床富氧燃烧是具有重要应用前景的燃烧中碳捕集技术。为更深入认识固体燃料的流态化富氧燃烧行为,构建了微型流态化反应-质谱联用实验系统,反应器直径10 mm,燃烧温度700~900℃,探索了基于在线质谱分析的流态化燃烧过程特性表征方法,以烟煤和花梨木为对象,研究了煤、生物质及其混合物在富氧气氛和流态化条件下的燃烧行为,重点考察了氧浓度、燃烧温度、煤与生物质质量比对CO2谱峰曲线形态、反应总时间、起始反应时刻、烟气中富集CO2体积分数、颗粒燃烧产生CO2量、CO2相对生成率等特性的影响。结果表明,在O2/CO2燃烧气氛下,随着氧体积分数增加,燃烧总反应时间缩短,颗粒燃烧产生的CO2量和生成速率均增加,但烟气中富集的CO2体积分数减小;提高燃烧温度,缩短了燃烧过程所需的时间,可以促进CO2的富集,烟气中CO2浓度、颗粒燃烧产生的CO2量和生成速率均增加;生物质比例增大,起始反应时间提前,燃烧反应所需总时间减少,烟气中富集的CO2浓度和颗粒燃烧产生的CO2均减少,但CO2生成速率增加。 相似文献
19.
我国准东煤储量丰富,钠含量高。以高钠准东煤为燃料,CO2为气化介质,铁矿石为载氧体,基于鼓泡流化床反应器开展准东煤化学链燃烧特性的实验研究,考察了煤粒径、温度、流化风速和煤焦粒径对煤及煤焦化学链燃烧过程中可燃气体逃逸规律的影响;同时研究了煤中矿物质对煤焦气化过程的影响。结果表明,在基于鼓泡流化床实施的煤化学链燃烧过程中,由于煤颗粒和载氧体床料流化特性差异大,存在离析现象;离析影响煤化学链燃烧过程中挥发分和焦炭的转化;较高流化风速可显著增强载氧体与煤/焦炭颗粒的混合,有效改善离析对可燃气体转化的影响,降低可燃气体逃逸,并加快焦炭气化速率;煤焦中的矿物质能够维持煤焦较快的气化速率。 相似文献
20.
B. Arias J. M. Cordero M. Alonso J. C. Abanades 《American Institute of Chemical Engineers》2012,58(7):2262-2269
Calcium looping is an energy‐efficient CO2 capture technology that uses CaO as a regenerable sorbent. One of the advantages of Ca‐looping compared with other postcombustion technologies is the possibility of operating with flue gases that have a high SO2 content. However, experimental information on sulfation reaction rates of cycled particles in the conditions typical of a carbonator reactor is scarce. This work aims to define a semiempirical sulfation reaction model at particle level suitable for such reaction conditions. The pore blocking mechanism typically observed during the sulfation reaction of fresh calcined limestones is not observed in the case of highly cycled sorbents (N > 20) and the low values of sulfation conversion characteristic of the sorbent in the Ca‐looping system. The random pore model is able to predict reasonably well, the CaO conversion to CaSO4 taking into account the evolution of the pore structure during the calcination/carbonation cycles. The intrinsic reaction parameters derived for chemical and diffusion controlled regimes are in agreement with those found in the literature for sulfation in other systems. © 2011 American Institute of Chemical EngineersAIChE J, 2012 相似文献