共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near‐wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near‐wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8x6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout. 相似文献
2.
Wind farms are known to modulate large scale structures in and around the wake regions of the turbines. The potential benefits of placing small hub height, small rotor turbines in between the large turbines in a wind farm to take advantage of such modulated large‐scale eddies are explored using large eddy simulation (LES). The study has been carried out in an infinite wind farm framework invoking an asymptotic limit, and the wind turbines are modeled using an actuator line model. The vertically staggered wind turbine arrangements that are studied in the present work consist of rows of large wind turbines, with rows of smaller wind turbines (ie, smaller rotor size and shorter hub height) placed in between the rows of large turbines. The influence of the hub height of the small turbines, in particular, how it affects the interactions between the large and small turbines and consequently their power, along with the multiscale dynamics involved, has been assessed in the current study. It was found that, in the multiscale layouts, the small turbines at lower hub heights operate more efficiently than their homogeneous single‐scale counterparts. In contrast, the small turbines with higher hub heights incur a loss of power compared with the corresponding single‐scale arrangements. 相似文献
3.
In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts. 相似文献
4.
Evaluation of layout and atmospheric stability effects in wind farms using large‐eddy simulation 下载免费PDF全文
Niranjan S. Ghaisas Cristina L. Archer Shengbai Xie Sicheng Wu Eoghan Maguire 《风能》2017,20(7):1227-1240
Large‐eddy simulation (LES) has been used previously to study the effect of either configuration or atmospheric stability on the power generated by large wind farms. This is the first study to consider both stability and wind farm configuration simultaneously and methodically with LES. Two prevailing wind directions, two layouts (turbines aligned versus staggered with respect to the wind) and three stabilities (neutral and moderately unstable and stable) were evaluated. Compared with neutral conditions, unstable conditions led to reduced wake losses in one configuration, to enhanced wake losses in two and to unchanged wake losses in one configuration. Conversely, stable conditions led to increased wake losses in one, decreased wake losses in two and unchanged wake losses in one configuration. Three competing effects, namely, rates of wake recovery due to vertical mixing, horizontal spread of wakes and localized regions of acceleration caused by multiple upstream wakes, were identified as being responsible for the observed trends in wake losses. The detailed flow features responsible for these non‐linear interactions could only be resolved by the LES. Existing analytical models ignore stability and non‐linear configuration effects, which therefore need to be incorporated. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
5.
This article provides an overview and analysis of different wake‐modelling methods which may be used as prediction and design tools for both wind turbines and wind farms. We also survey the available data concerning the measurement of wind magnitudes in both single wakes and wind farms, and of loading effects on wind turbines under single‐ and multiple‐wake conditions. The relative merits of existing wake and wind farm models and their ability to reproduce experimental results are discussed. Conclusions are provided concerning the usefulness of the different modelling approaches examined, and difficult issues which have not yet been satisfactorily treated and which require further research are discussed. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
6.
Influence of inflow conditions on turbine loading and wake structures predicted by large eddy simulations using exact geometry 下载免费PDF全文
A large eddy simulation was performed on an National Renewable Energy Laboratory (NREL) phase VI wind turbine (10 m diameter), using the exact blade geometry, to determine the influence of different inflow conditions on the aerodynamic loadings and the near wake characteristics. The effects of the three inflow conditions, uniform inflow, linear wind shear and linear wind shear with turbulence, are investigated. Wind shear causes periodic variations in power and aerodynamic loading with an additional force component exerted along the lateral direction. Significant separation occurs in the high wind region on the suction side of the blades, resulting in unstable loading in off‐design inflow conditions. Because of the shear effect between the near‐blade tip vortex and ambient flow, the strong vortex core in the helical structure dissipates and transforms into a continuous vorticity sheet when x/D > 1.5. The combination of inflow turbulence and wind shear enhances the turbulence generation mechanism in the near wake, where energy is withdrawn from large wake structures and converted into energy of small‐scale structures. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
Self‐similarity and turbulence characteristics of wind turbine wakes via large‐eddy simulation 下载免费PDF全文
Mean and turbulent properties of the wake generated by a single wind turbine are studied in this paper with a new large eddy simulation (LES) code, the wind turbine and turbulence simulator (WiTTS hereafter). WiTTS uses a scale‐dependent Lagrangian dynamical model of the sub‐grid shear stress and actuator lines to simulate the effects of the rotating blades. WiTTS is first tested by simulating neutral boundary layers without and with a wind turbine and then used to study the common assumptions of self‐similarity and axisymmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. We find that the wind velocity deficit generally remains self similarity to a Gaussian distribution in the horizontal. In the vertical, the Gaussian self‐similarity is still valid in the upper part of the wake, but it breaks down in the region of the wake close to the ground. The horizontal expansion of the wake is always faster and greater than the vertical expansion under neutral stability due to wind shear and impact with the ground. Two modifications to existing equations for the mean velocity deficit and the maximum added turbulence intensity are proposed and successfully tested. The anisotropic wake expansion is taken into account in the modified model of the mean velocity deficit. Turbulent kinetic energy (TKE) budgets show that production and advection exceed dissipation and turbulent transport. The nacelle causes significant increase of every term in the TKE budget in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
An experimental investigation on the wake interferences among wind turbines sited in aligned and staggered wind farms 下载免费PDF全文
An experimental investigation was conducted for a better understanding of the wake interferences among wind turbines sited in wind farms with different turbine layout designs. Two different types of inflows were generated in an atmospheric boundary layer wind tunnel to simulate the different incoming surface winds over typical onshore and offshore wind farms. In addition to quantifying the power outputs and dynamic wind loads acting on the model turbines, the characteristics of the wake flows inside the wind farms were also examined quantitatively. After adding turbines staggered between the first 2 rows of an aligned wind farm to increase the turbine number density in the wind farm, the added staggered turbines did not show a significant effect on the aeromechanical performance of the downstream turbines for the offshore case. However, for the onshore case, while the upstream staggered turbines have a beneficial effect on the power outputs of the downstream turbines, the fatigue loads acting on the downstream turbines were also found to increase considerably due to the wake effects induced by the upstream turbines. With the same turbine number density and same inflow characteristics, the wind turbines were found to be able to generate much more power when they are arranged in a staggered layout than those in an aligned layout. In addition, the characteristics of the dynamic wind loads acting on the wind turbines sited in the aligned layout, including the fluctuation amplitudes and power spectrum, were found to be significantly different from those with staggered layout. 相似文献
9.
Large‐eddy simulation of turbulent flow past wind turbines/farms: the Virtual Wind Simulator (VWiS) 下载免费PDF全文
Xiaolei Yang Fotis Sotiropoulos Robert J. Conzemius John N. Wachtler Mike B. Strong 《风能》2015,18(12):2025-2045
A large‐eddy simulation framework, dubbed as the Virtual Wind Simulator (VWiS), for simulating turbulent flow over wind turbines and wind farms in complex terrain is developed and validated. The wind turbines are parameterized using the actuator line model. The complex terrain is represented by the curvilinear immersed boundary method. The predictive capability of the present method is evaluated by simulating two available wind tunnel experimental cases: the flow over a stand‐alone turbine and an aligned wind turbine array. Systematic grid refinement studies are carried out, for both single turbine and multi‐turbine array cases, and the accuracy of the computed results is assessed through detailed comparisons with wind tunnel experiments. The model is further applied to simulate the flow over an operational utility‐scale wind farm. The inflow velocities for this case are interpolated from a mesoscale simulation using a Weather Research and Forecasting (WRF) model with and without adding synthetic turbulence to the WRF‐computed velocity fields. Improvements on power predictions are obtained when synthetic turbulence is added at the inlet. Finally the VWiS is applied to simulate a yet undeveloped wind farm at a complex terrain site where wind resource measurements have already been obtained. Good agreement with field measurements is obtained in terms of the time‐averaged streamwise velocity profiles. To demonstrate the ability of the model to simulate the interactions of terrain‐induced turbulence with wind turbines, eight hypothetical turbines are placed in this area. The computed extracted power underscores the significant effect of site‐specific topography on turbine performance. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
Effects of spatial and temporal resolution of the turbulent inflow on wind turbine performance estimation 下载免费PDF全文
The effects of spatial and temporal resolution of wind inflows generated using large eddy simulations (LES) on the scales of turbulence present in the wind inflow, and the resulting changes in wind turbine performance were investigated for neutral atmospheric boundary layer conditions. Wind inflows with four different spatial resolutions and five different temporal resolutions were used to produce different turbine responses. An aero‐elastic code assessed the dynamic response of two wind turbines to the different inflows. Auto‐spectral density functions (ASDF) of turbine responses, such as blade deflection and bending moment, that are representative of the turbine response were used to assess the effect of the inflow. The results indicated that, as additional turbulence scales were resolved, the wind turbines showed a similar increased response that was evident in both the ASDF and variance of the different wind turbine performance parameters. As a result, the amount to which turbulence is resolved in the inflow, particularly using tools such as LES, will be important to consider when using these inflows for wind turbine design and performance prediction. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Benefits of collocating vertical‐axis and horizontal‐axis wind turbines in large wind farms 下载免费PDF全文
In this study, we address the benefits of a vertically staggered (VS) wind farm, in which vertical‐axis and horizontal‐axis wind turbines are collocated in a large wind farm. The case study consists of 20 small vertical‐axis turbines added around each large horizontal‐axis turbine. Large‐eddy simulation is used to compare power extraction and flow properties of the VS wind farm versus a traditional wind farm with only large turbines. The VS wind farm produces up to 32% more power than the traditional one, and the power extracted by the large turbines alone is increased by 10%, caused by faster wake recovery from enhanced turbulence due to the presence of the small turbines. A theoretical analysis based on a top‐down model is performed and compared with the large‐eddy simulation. The analysis suggests a nonlinear increase of total power extraction with increase of the loading of smaller turbines, with weak sensitivity to various parameters, such as size, and type aspect ratio, and thrust coefficient of the vertical‐axis turbines. We conclude that vertical staggering can be an effective way to increase energy production in existing wind farms. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
Karl Nilsson Stefan Ivanell Kurt S. Hansen Robert Mikkelsen Jens N. Sørensen Simon‐Philippe Breton Dan Henningson 《风能》2015,18(3):449-467
The power production of the Lillgrund wind farm is determined numerically using large‐eddy simulations and compared with measurements. In order to simulate realistic atmospheric conditions, pre‐generated turbulence and wind shear are imposed in the computational domain. The atmospheric conditions are determined from data extracted from a met mast, which was erected prior to the establishment of the farm. In order to allocate most of the computational power to the simulations of the wake flow, the turbines are modeled using an actuator disc method where the discs are imposed in the computational domain as body forces which for every time step are calculated from tabulated airfoil data. A study of the influence of imposed upstream ambient turbulence is performed and shows that higher levels of turbulence results in slightly increased total power production and that it is of great importance to include ambient turbulence in the simulations. By introducing ambient atmospheric turbulence, the simulations compare very well with measurements at the studied inflow angles. A final study aiming at increasing the farm production by curtailing the power output of the front row turbines and thus letting more kinetic energy pass downstream is performed. The results, however, show that manipulating only the front row turbines has no positive effect on the farm production, and therefore, more complex curtailment strategies are needed to be tested. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
The wake of a wind turbine operating in a uniform inflow at various tip speed ratios is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. The computations are carried out in a numerical mesh with about 8.4·106 grid points distributed to facilitate detailed studies of basic features of both the near and far wake, including distributions of interference factors, vortex structures and formation of instabilities. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
The late afternoon hours in the diurnal cycle precede the development of the nocturnal stable boundary layer. This “evening transition” (ET) period is often when energy demand peaks. This period also corresponds to the time of day that is a precursor to late‐afternoon downbursts, a subject of separate interest. To capture physical characteristics of wind fields in the atmospheric boundary layer (ABL) during this ET period, particularly the interplay of shear and turbulence, stochastic simulation approaches, although more tractable, are not suitable. Large‐eddy simulation (LES), on the other hand, may be used to generate high‐resolution ABL turbulent flow fields. We present a suite of idealized LES four‐dimensional flow fields that define a database representing different combinations of large‐scale atmospheric conditions (characterized by associated geostrophic winds) and surface boundary conditions (characterized by surface heat fluxes). Our objective is to evaluate the performance of wind turbines during the ET period. Accordingly, we conduct a statistical analysis of turbine‐scale wind field variables. We then employ the database of these LES‐based inflow wind fields in aeroelastic simulations of a 5‐MW wind turbine. We discuss how turbine loads change as the ET period evolves. We also discuss maximum and fatigue loads on the rotor and tower resulting from different ABL conditions. Results of this study suggest that, during the ET period, the prevailing geostrophic wind speed affects the mean and variance of longitudinal winds greatly and thus has significant influence on all loads except the yaw moment which is less sensitive to uniform and symmetric incoming flow. On the other hand, surface heat flux levels affect vertical turbulence and wind shear more and, as a result, only affect maximum blade flapwise bending and tower fore‐aft bending loads. 相似文献
15.
Combining economic and fluid dynamic models to determine the optimal spacing in very large wind farms 下载免费PDF全文
Wind turbine spacing is an important design parameter for wind farms. Placing turbines too close together reduces their power extraction because of wake effects and increases maintenance costs because of unsteady loading. Conversely, placing them further apart increases land and cabling costs, as well as electrical resistance losses. The asymptotic limit of very large wind farms in which the flow conditions can be considered ‘fully developed’ provides a useful framework for studying general trends in optimal layouts as a function of dimensionless cost parameters. Earlier analytical work by Meyers and Meneveau (Wind Energy 15, 305–317 (2012)) revealed that in the limit of very large wind farms, the optimal turbine spacing accounting for the turbine and land costs is significantly larger than the value found in typical existing wind farms. Here, we generalize the analysis to include effects of cable and maintenance costs upon optimal wind turbine spacing in very large wind farms under various economic criteria. For marginally profitable wind farms, minimum cost and maximum profit turbine spacings coincide. Assuming linear‐based and area‐based costs that are representative of either offshore or onshore sites we obtain for very large wind farms spacings that tend to be appreciably greater than occurring in actual farms confirming earlier results but now including cabling costs. However, we show later that if wind farms are highly profitable then optimization of the profit per unit area leads to tighter optimal spacings than would be implied by cost minimization. In addition, we investigate the influence of the type of wind farm layout. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd 相似文献
16.
A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes 总被引:1,自引:0,他引:1
A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
A wind tunnel experiment has been performed to quantify the Reynolds number dependence of turbulence statistics in the wake of a model wind turbine. A wind turbine was placed in a boundary layer flow developed over a smooth surface under thermally neutral conditions. Experiments considered Reynolds numbers on the basis of the turbine rotor diameter and the velocity at hub height, ranging from Re = 1.66 × 104 to 1.73 × 105. Results suggest that main flow statistics (mean velocity, turbulence intensity, kinematic shear stress and velocity skewness) become independent of Reynolds number starting from Re ≈ 9.3 × 104. In general, stronger Reynolds number dependence was observed in the near wake region where the flow is strongly affected by the aerodynamics of the wind turbine blades. In contrast, in the far wake region, where the boundary layer flow starts to modulate the dynamics of the wake, main statistics showed weak Reynolds dependence. These results will allow us to extrapolate wind tunnel and computational fluid dynamic simulations, which often are conducted at lower Reynolds numbers, to full‐scale conditions. In particular, these findings motivates us to improve existing parameterizations for wind turbine wakes (e.g. velocity deficit, wake expansion, turbulence intensity) under neutral conditions and the predictive capabilities of atmospheric large eddy simulation models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
An experimental and numerical study of the atmospheric stability impact on wind turbine wakes 总被引:1,自引:0,他引:1 下载免费PDF全文
Ewan Machefaux Gunner C. Larsen Niels Troldborg Mark C. Kelly Abhijit Chougule Kurt Schaldemose Hansen Javier Sanz Rodrigo 《风能》2016,19(10):1785-1805
In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full‐scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall‐regulated 500 kW turbine at the DTU Wind Energy, Risø campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s?1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk–Richardson number and the Froude number. Three test cases are subsequently defined covering various atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed, as basis for future model development and improvement. Finally, the impact of atmospheric stability on large‐scale and small‐scale wake flow characteristics is presently investigated. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
The potential benefits associated with harnessing available momentum and reducing turbulence levels in a wind farm composed of wind turbines of alternating size are investigated through wind tunnel experiments. A variable size turbine array composed of 3 by 8 model wind turbines is placed in a boundary layer flow developed over both a smooth and rough surfaces under neutrally stratified thermal conditions. Cross‐wire anemometry is used to capture high resolution and simultaneous measurements of the streamwise and vertical velocity components at various locations along the central plane of the wind farm. A laser tachometer is employed to obtain the instantaneous angular velocity of various turbines. The results suggest that wind turbine size heterogeneity in a wind farm introduces distinctive flow interactions not possible in its homogeneous counterpart. In particular, reduced levels of turbulence around the wind turbine rotors may have positive effects on turbulent loading. The turbines also appear to perform quite uniformly along the entire wind farm, whereas surface roughness impacts the velocity recovery and the spectral content of the turbulent flow within the wind farm. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
Power smoothing in large wind farms using optimal control of rotating kinetic energy reserves 下载免费PDF全文
In large wind farms, self‐induced turbulence levels significantly increase the variability of generated power in a range of time scales from a few seconds to several minutes. In the current study, we investigate the potential for reducing this type of variability by dynamically controlling the rotating kinetic energy reserves that are present in the farm's wind turbines. To this end, we reduce the burden of frequency regulation on remaining conventional units when they are displaced in favor of wind turbines. We focus on the development of a theoretical benchmark framework in which we explore the trade‐off between high energy extraction and low variability using optimal coordinated control of multiple turbines subject to a turbulent wind field. This wind field is obtained from a large‐eddy simulation of a fully developed wind farm boundary layer. The controls that are optimized are the electric torque and the pitch angles of the individual turbines as function of time so that turbines are accelerated or decelerated to optimally extract or store energy in the turbines' rotating inertia. Results are presented in terms of Pareto fronts (i.e., curves with optimal trade‐offs), and we find that power variations can be significantly reduced with limited loss of extracted energy. For a one‐turbine case, such an optimal control leads to large potential reductions of variability but mainly for time scales below 10 s if we limit power losses to a few percent. Variability over longer time scales (10–100 s) is reduced considerably more for coordinated control. For instance, restricting the energy‐loss incurred with smoothing to 1%, and looking at time scales of 50 s, we manage to reduce variability with a factor of 6 for a coordinated case with 24 turbines, compared with a factor of 1.4 for an uncoordinated case. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献