首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王伟  高强  桂霞  云志 《化工学报》2016,67(2):442-447
选取华东地区某油田的稠油作为研究对象,采用静态高压相平衡装置,在温度363.15、368.15、373.15 K下,测定了压力2~22 MPa 范围内CO2-稠油体系的气液两相的平衡组成。将稠油看作假一元组分,通过基团贡献法估算了稠油的临界参数,分别采用P-R 方程和改进的P-T 方程拟合关联所测得的实验数据,得到了CO2-稠油体系的二元作用参数,最后计算了CO2-稠油体系的相平衡数据,结果表明改进的P-T 方程的拟合结果要明显优于P-R 方程,更适用于高温高压下CO2-稠油体系溶解度的数据预测。  相似文献   

2.
The densities of two polymer/CO2 single‐phase solutions, poly(ethylene glycol) (PEG)/CO2 and polyethylene (PE)/CO2, were measured at temperatures higher than melting temperature of the polymer under CO2 pressures in the range 0–15 MPa using a newly‐proposed gravimetric method. A magnetic suspension balance (MSB) was used for the density measurement under the high pressure CO2: A thin disc‐shaped platinum plate was submerged in the considered polymer/CO2 single‐phase solution in the MSB high‐pressure cell. The weight of the plate was measured while keeping CO2 pressure and temperature in the sorption cell at a specified level. Since the buoyancy force exerted on the plate by the polymer/CO2 solution reduced the apparent weight of the plate, the density of the polymer/CO2 solution could be calculated by subtracting the true weight of the plate from its measured weight. Experimental results showed that the density of PE/CO2 solution increased with the increase of CO2 pressure and the density of PEG/CO2 solution decreased with the increase of CO2 pressure. To differentiate the effect of CO2 dissolution in polymer from that of mechanical pressure, the density of polymer/CO2 solution was compared with the density of neat polymer under the given mechanical pressure, which was calculated using the Sanchez–Lacombe equation of state and Pressure–Volume–Temperature data of the polymer. The comparison could elucidate that the dissolution of CO2 in polymer reduced density of both PEG/CO2 and PE/CO2 systems but the degree of CO2 induced‐density reduction was different between two polymer/CO2 systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
We use the PC‐SAFT equation of state to model the solubility of CO2 in various homopolymers. We also model the swelling ratio of the PP (polypropylene)‐CO2 mixture using PC‐SAFT and then compare the results with Sanchez‐Lacombe (S‐L) and Simha‐Somcynsky (S‐S) equations. The results show that PC‐SAFT can describe the solubility of CO2 in polymers very well. We compare two sets of parameters in the PC‐SAFT equation, Gross et al.'s and Chen et al.'s. As for the swelling ratio, PC‐SAFT using Chen et al. parameters is better than S‐L equation, which is commonly used by early researchers in studying the solubility of CO2 in polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44804.  相似文献   

4.
5.
6.
The new group binary interaction parameters of UNIFAC model (anm and amn) between CO2 and 22 ionic liquid (IL) groups were obtained by means of correlating the solubility data of CO2 in pure ILs at different temperatures (>273.2 K). We measured the CO2 solubility at low temperatures down to 243.2 K in pure ILs, i.e., [OMIM]+[BF4]? and [OMIM]+[Tf2N]?, and their equimolar amount of mixture, in order to fill the blank of solubility data at low temperatures and also to justify the applicability of UNIFAC model over a wider temperature range. It was verified that UNIFAC model can be used for predicting the CO2 solubility in pure ILs and in the binary mixture of ILs both at high (>273.2 K) and low temperatures (<273.2 K) effectively, as well as identifying the new structure–property relation. This is the first work to extend the UNIFAC model to IL‐CO2 systems. © 2013 American Institute of Chemical Engineers AIChE J 60: 716–729, 2014  相似文献   

7.
In this work, the equilibrium CO2 solubility in the aqueous tertiary amine, N‐methyl‐4‐piperidinol (MPDL) was measured over a range of temperatures, CO2 partial pressures and amine concentrations. The dissociation constant of the MPDL solution was determined as well. A new thermodynamic model was developed to predict the equilibrium CO2 solubility in the MPDL‐H2O‐CO2 system. This model, equipped with the correction factor (Cf), can give reasonable prediction with an average absolute deviation of 2.0%, and performs better than other models (i.e., KE model, Li‐Shen model, and Hu‐Chakma). The second‐order reaction rate constant (k2) of MPDL and the heat of CO2 absorption (–ΔHabs) into aqueous MPDL solutions were evaluated as well. Based on the comparison with some conventional amines, MPDL revealed a high‐equilibrium CO2 loading, reasonably fast absorption rate when compared with other tertiary amines, and a low energy requirement for regeneration. It may, therefore, be considered to be an alternative solvent for CO2 capture. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3395–3403, 2017  相似文献   

8.
The universal quasichemical functional‐group activity coefficients (UNIFAC) model for ionic liquids (ILs) has become notably popular because of its simplicity and availability via modern process simulation softwares. In this work, new group binary interaction parameters (αmn and αnm) between CO (H2) and IL groups were obtained by correlating the solubility data in pure ILs at high temperatures (above 273.2 K) collected from the literature. the solubility of CO in [BMIM]+[BF4]?, [OMIM]+[BF4]?, [OMIM]+[Tf2N]?, and their mixtures, as well as that of H2 in [EMIM]+[BF4]?, [BMIM]+[BF4]?, [OMIM]+[Tf2N]?, and their mixtures, at temperatures from 243.2 to 333.2 K and pressures up to 6.0 MPa were measured. The UNIFAC model was observed to well predict the solubility in pure and mixed ILs at both high (above 273.2 K) and low (below 273.2 K) temperatures. Moreover, the selectivity of CO (or H2) to CO2 in ILs increases with decreasing temperature, indicating that low temperatures favor for gas separation. © 2014 American Institute of Chemical Engineers AIChE J 60: 4222–4231, 2014  相似文献   

9.
Deep eutectic solvents (DESs) have drawn a growing research interest for applications in a wide range of scientific and industrial arenas. However, a limited effort has been reported in the area of gas separation processes and particularly the carbon dioxide capture. This study introduces a novel set of DESs that were prepared by complexing ethylenediamine (EDA), monoethanolamine (MEA), tetraethylenepentamine (TEPA), triethylenetetramine (TETA) and diethylenetriamine (DETA) as hydrogen bond donors to monoethanolamide hydrochloride (EAHC) salt as a hydrogen bond acceptor. The absorption capacity of CO2 was evaluated by exploiting a method based on measuring the pressure drop during the absorption process. The solubility of different DESs was studied at a temperature of 313.15 K and initial pressure of 0.8 MPa. The DES systems 1EAHC:9DETA, 1EAHC:9TETA and 1EAHC:9TEPA achieved the highest CO2 solubility of 0.6611, 0.6572 and 0.7017 mol CO2·(mole DES)−1 respectively. The results showed that CO2 solubility in the DESs increased with increasing the molar ratio of hydrogen bond donor. In addition, the CO2 solubility increased as the number of amine groups in the solvent increases, therefore, increasing the alkyl chain length in the DESs, resulted in increasing the CO2 solubility. FTIR analysis confirms the DES synthesis since no new functional group was identified. The FTIR spectra also revealed the carbamate formation in DES-CO2 mixtures. In addition, the densities and viscosities of the synthesized DESs were also measured. The CO2 initial investigation of reported DESs shows that these can be potential alternative for conventional solvents in CO2 capture processes.  相似文献   

10.
A systematic study of CO2 capture on the amine‐impregnated solid adsorbents is carried out at CO2 concentrations in the range of 400–5000 ppm, relating to the direct CO2 capture from atmospheric air. The commercially available polymethacrylate‐based HP2MGL and polyethylenimine are screened to be the suitable support and amine, respectively, for preparation of the adsorbent. The adsorbents exhibit an excellent saturation adsorption capacity of 1.96 mmol/g for 400 ppm CO2 and 2.13 mmol/g for 5000 ppm CO2. Moisture plays a promoting effect on CO2 adsorption but depends on the relative humidity. The presence of O2 would lead to the decrease of adsorption capacity but do not affect the cyclic performance. The diffusion additive is efficient to improve the adsorption capacity and cyclic performance. Moreover, the adsorbents can be easily regenerated under a mild temperature. This study may have a positive impact on the design of high‐performance adsorbents for CO2 capture from ambient air. © 2014 American Institute of Chemical Engineers AIChE J, 61: 972–980, 2015  相似文献   

11.
川芎油在超临界二氧化碳中溶解度的测定与关联   总被引:1,自引:0,他引:1       下载免费PDF全文
Extraction of the Ligusticum Chuanxiong oil with supercritical CO2 (SC-CO2) was investigated at the temperatures ranging from 55℃ to 70℃ and pressure from 25 MPa to 35 MPa. The mass of Ligusticum Chuanxiong oil extracted increased with pressure at constant temperature. The initial slope of the extraction was considered as the solubility of oil in SC-CO2. Chrastil equation was used to correlate the solubility data of Ligusticum Chuanxiong oil. An improved Chrastil equation was also presented and was employed to correlate the solubility data, The correlation results show that the values of the average absolute relative deviation are 5.94% and 3.33% respectively, indicating the improved version has better correlation accuracy than that of Chrastil equation.  相似文献   

12.
13.
Information on acid gas solubility in solvents utilized is needed for the design of gas plants. A mathematical model for the prediction of equilibrium solubility of CO2 and H2S in aqueous 2-amino-2-(ethoxy)ethanol (DGA) solutions is presented. The equilibrium constants, K1 and K2, representing a simple proton transfer reaction and the carbamate formation reaction, respectively, were found to be functions of temperature and free acid gas concentration. In addition, K2, was affected by DGA concentration as well. Model predictions agree favourably with experimental data.  相似文献   

14.
The phase equilibria of CO2 and aqueous electrolyte solutions are important to various chemical‐, petroleum‐, and environmental‐related technical applications. CO2 solubility in aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions at a pressure of 15 MPa, the temperatures from 323 to 423 K, and the ionic strength from 1 to 6 mol kg?1 were measured. Based on the measured experimental CO2 solubility, the previous developed fugacity‐activity thermodynamic model for the CO2‐NaCl‐H2O system was extended to account for the effects of different salt species on CO2 solubility in aqueous solutions at temperatures up to 523 K, pressures up to 150 MPa, and salt concentrations up to saturation. Comparisons of different models against literature data reveal a clear improvement of the proposed PSUCO2 model in predicting CO2 solubility in aqueous salt solutions. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2286–2297, 2015  相似文献   

15.
1-(2-Hydoxyethyl)-piperidine (1-(2HE)-PP) is a new tertiary amine with desirable properties and can be potentially used to formulate superior absorbents for CO2 capture. The equilibrium CO2 solubility of 1-(2HE)-PP solution is measured over temperatures from 298 to 333 K, CO2 partial pressures from 8.1 to 101.3 kPa and initial amine concentrations from 1 to 5 M. Two thermodynamic models, namely semiempirical model and activity coefficient model are developed for the system. The activity coefficient model shows better estimation solubility with an absolute average relative deviation (AARD) of 7.6%. In the comparison between the two models, a comprehensive analysis is presented. Some suggestions are provided for the similar model development. In addition, the speciation plot of CO2 loaded 1-(2HE)-PP solution is predicted based on the activity coefficient model. The predictive pH values agree well with experimental data with AARD of 1.0%. Finally, the potential of 1-(2-HE)PP to be an alternative amine in CO2 capture is evaluated.  相似文献   

16.
K2CO3 supported on activated carbon (K2CO3/AC) is a promising means to remove low‐concentration CO2 from confined spaces. In this removal process, physical adsorption plays an important role but it is difficult to quantify the amount of CO2 adsorbed when both H2O and CO2 are present. The linear driving force mass transfer model is adopted to study the CO2 adsorption kinetic characteristics of K2CO3/AC by analyzing the experimental data. The effect of K2CO3 and H2O on the adsorption of CO2 in K2CO3/AC was also evaluated. K2CO3 loaded on the support is found to increase the mass transfer resistance but decrease the activation energy required for the physical adsorption process. The presence of water vapor is disadvantageous to achieve high physical adsorption capacity since it enhances the chemical sorption in the competitive dynamic sorption process.  相似文献   

17.
Among the fat fish species available from Eastern Quebec (Canada), whole Atlantic mackerel (Scomber scombrus) and herring (Clupea harengus) represent abundant fishery resources which are currently under‐utilized. They have relatively high contents of oil and coenzyme Q10 (CoQ10) in their tissues, which could be valuable for nutraceutical applications. Therefore, two low‐temperature extraction processes were compared for the recovery of oil and CoQ10 from these resources, such as enzymatic hydrolysis using Protamex? and supercritical CO2 (SCO2) using fish lyophilizates. The results revealed that highest yields of oil and CoQ10 were obtained using the enzymatic hydrolysis process with mackerel. Whatever the process used, CoQ10 concentrations were higher in herring oil, due mainly to a more selective extraction of CoQ10 over that of the oil. The highest CoQ10 recovery rates (extraction efficiencies) were obtained using the enzymatic hydrolysis process with both types of fish, but also the SCO2 process with herring under some conditions. For mackerel, the lower CoQ10 recovery rates obtained from the SCO2 process were explained by its more important matrix effect. An economic assessment of both processes revealed that the enzymatic hydrolysis extraction process would be the most promising for up‐scaling the recovery of oil and CoQ10 from these resources.  相似文献   

18.
Foamed non‐Fickian diffusion (FNFD) model for a ternary system was proposed for the first time to regress the desorption data obtained by the gravimetric method. Results showed that FNFD model could accurately describe the diffusion behavior of CO2 and ethanol out of foamed polystyrene (PS) and well predict total solubilities of CO2 and ethanol in foamed PS. Meanwhile, Sanchez–Lacombe equation of state (S–L EoS) was adopted to calculate the respective solubilities (solubility of CO2 in PS or solubility of ethanol in PS) and total solubilities of CO2 and ethanol in PS for CO2‐ethanol‐PS ternary system. Results showed that the total solubility of CO2 and ethanol obtained from S–L EoS agreed well with values obtained by FNFD model. Furthermore, the respective and total solubilities of CO2 and ethanol at 313.15, 338.15, and 343.15 K were calculated by S–L EoS. Results indicated that in the dissolving process, ethanol would be accelerated by CO2 to dissolve into PS, and ethanol would compete with CO2 to dissolve into PS, simultaneously. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46281.  相似文献   

19.
20.
In this work, the equilibrium solubility of CO2 in a 1‐diethylamino‐2‐propanol (1DEA2P) solution was determined as a function of 1DEA2P concentration (over the range of 1–2 M), temperature (in the range of 298–333 K), and CO2 partial pressure (in the range of 8–101 kPa). These experimental results were used to fit the present correlation for K2 (Kent‐Eisenberg model, Austgen model, and Li‐Shen model). It was found that all of the models could represent the CO2 equilibrium solubility in 1DEA2P solution with ADDs for Kent‐Eisenberg model, Austgen model, and Li‐Shen model of 6.3, 7.3, and 12.2%, respectively. A new K2 correlation model, the Liu‐Helei model, was also developed to predict the CO2 equilibrium solubility in 1DEA2P solution with an excellent ADD of 3.4%. In addition, the heat of absorption of CO2 in 1DEA2P solution estimated by using the Gibbs‐Helmholtz equation was found to be ?45.7 ± 3.7 kJ/mol. Information and guidelines about effectively using data for screened solvents is also provided based on the three absorption parameters: CO2 equilibrium solubility, second order reaction constant (k2), and CO2 absorption heat. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4465–4475, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号