首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A partial crosslinking method was developed to modify hydrophilic membranes. The membrane was sandwiched between two porous plates to protect part of the areas, then immersed into a crosslinking solution such as glutaraldehyde, and finally, set free from the plates. The protected and unprotected areas were alternatively distributed to form a heterogeneous membrane. The unprotected areas were crosslinked to enhance the membrane stability, whereas the protected areas retained their original permeability. Three types of hydrophilic base membranes were selected and prepared from poly(2,6‐dimethyl‐1,4‐phenylene oxide) and poly(vinyl alcohol). The base membranes were partially crosslinked (5.56% of the direct area with enlarged areas) to investigate their stability and diffusion dialysis (DD) performances. The partially crosslinked membranes had remarkably reduced water uptake and swelling degrees compared with the base membranes (72.4–250.4 vs 178.2%–544.4% and 94.0%–408.0% vs. 163.8%–814.8%). Meanwhile, the membranes still retained high DD performances for separating HCl–FeCl2 or NaOH–NaAlO2 solutions. The dialysis coefficients of HCl and NaOH were much higher than those of the fully crosslinked membranes (0.0209 vs. 0.0109 m/h and 0.0059–0.0085 vs. 0.0017–0.0022 m/h). Hence, partial crosslinking was effective in optimizing the membrane hydrophilicity and permeability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45305.  相似文献   

2.
Crosslinked sulfonated poly(ether ether ketone) (SPEEK) membranes were prepared through the electron beam (EB)‐irradiation crosslinking of SPEEK/1,4‐butanediol under various irradiation conditions and used as a proton exchange membrane (PEM) for fuel cell applications. The crosslinked membranes were characterized by gel fraction, a universal testing machine (UTM), dynamic mechanical analysis (DMA), and small‐angle X‐ray scattering (SAXS). The gel fraction of the crosslinked membranes was used to estimate the degree of crosslinking, and the gel fraction was found to be increased with an increase of the crosslinker content and EB‐absorbed dose. The UTM results indicate that a brittle EB‐crosslinked membrane becomes more flexible with an increase in the crosslinker content. The DMA results show that the EB‐crosslinked membranes have well‐developed ionic aggregation regions and the cluster Tg of membranes decrease with an increase in the 1,4‐butanediol crosslinker content. The SAXS results show that the Bragg and persistence distance of crosslinked membranes increase with an increase in the crosslinker content. The proton conductivities of the EB‐crosslinked membranes were more than 9 × 10?2 S/cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41760.  相似文献   

3.
AB‐type polyphenylquinoxaline (ABPPQ) membranes exhibit great mechanical properties and thermal properties for high‐temperature proton exchange membranes (PEMs). However, they dissolve in high‐concentration phosphoric acid (PA) during acid doping. In order to improve the PA resistant of ABPPQ, crosslinked ABPPQ membranes were prepared using sulfuric acid. The crosslinked ABPPQ membranes showed high PA resistance. The acid content of PA‐doped membranes decreased slightly with crosslinking, but the crosslinked polyphenylquinoxaline (CPPQ)‐20 membrane could reach 2.5 × 10?2 S/cm proton conductivity at 160°C. Membrane electrode assemblies were fabricated with an active area of 4 cm2 and Pt loading of 1 mg/cm2. A startup and shutdown test (operated at 150°C with 0.2 A/cm2 for 12 h and then 12 h off at room temperature) and a 30‐day long‐term durability test (150°C with 0.2 A/cm2) were conducted. In the startup and shutdown test, the crosslinked membranes showed a low open‐circuit voltage decay rate of 0.15 mV/h. In the 30‐day long‐term durability test, the voltage decay rate was 0.039 mV/h. In both tests, the crosslinked membranes showed a stable performance. Therefore, the crosslinked ABPPQ membranes can be regarded as a novel material for high‐temperature PEM fuel cells. POLYM. ENG. SCI., 59:2169–2173, 2019. © 2019 Society of Plastics Engineers  相似文献   

4.
Novel proton exchange membranes are solvent‐cast from N,N‐dimethylacetamide (DMAc) solutions of the crosslinked poly(arylene ether ketone) copolymer with pendant carboxylic acid group (C‐SPAEK) via poly(ethylene glycol) (PEG) with different amounts. These membranes are formed as a result of physical and chemical crosslinking. In this study, 1H‐NMR and FTIR have been used to confirm the chemical structures of the copolymers. Mechanical and thermal properties, swelling and proton conductivity are affected by the crosslinker (PEG) content in the copolymers. Compared to the noncrosslinked C‐SPAEK membrane, the crosslinked membranes become more flexible and greatly reduced water uptake and swelling ratio with only slight sacrifice in proton conductivities. And the crosslinked membranes keep higher proton conductivities without a sharply decrease at higher temperature. These results show that the crosslinked membranes have potential applications as proton exchange membranes for fuel cell. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Nylon‐66 is a typical semicrystalline polymer that can be crosslinked using crosslinking agents and electron beam irradiation. Hybrid nylon‐66‐based membranes are more porous but denser compared to the pure nylon‐66 membrane. Besides that, hybrid nylon‐66 membranes exhibit higher water uptake and severe swelling in water. Si/nylon‐66 membranes were prepared by adding γ‐aminopropyltriethoxylsilane (APTEOS). Crosslinked silica in nylon‐66 membranes is confirmed with high gel content and Fourier transform infrared peaks, but XRD results showed that there is a low crystalline degree in these membranes. The thermal stability of hybrid nylon‐66 membranes is also less affected by APTEOS. The crosslinking agent only improves storage modulus in hybrid nylon‐66 membranes. After irradiation, it is learned that APTEOS improves separation performance of nylon‐66 membranes. However, excessive APTEOS causes the ratio of effective thickness over porosity (Δx/Ak) reduces significantly resulting a lower permeability membrane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
In this study, sulfonated poly(ether ether ketone) (SPEEK) was very efficiently crosslinked via a Friedel–Craft reaction using 1,6‐dibromohexane and AlCl3. The resulting crosslinked SPEEK (c‐SPEEK) membranes exhibited improved dimensional stability, thermal and chemical stability, and mechanical strength with slight reduction in the elongation. The methanol permeability was reduced by approximately two orders of magnitude by the crosslinking reaction. The proton conductivities of c‐SPEEK membranes were greater than Nafion‐212 in the temperature range of 30–90°C. Overall, this new crosslinking method can be conveniently and efficiently applicable to most aromatic hydrocarbon polymer membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40695.  相似文献   

7.
Here, we report the synthesis and the study of gas‐transport properties of crosslinked highly permeable copolymers from Si‐containing norbornene derivatives. The initial high‐molecular‐weight copolymers were prepared via addition copolymerization of 3‐trimethylsilyltricyclo[4.2.1.02,5]non‐7‐ene (TCNSi1) with 3‐triethoxysilyltricyclo[4.2.1.02,5]non‐7‐ene (TCNSiOEt) in good or high yields using a Pd‐catalyst. The obtained copolymers included up to 10 mol% of TCNSiOEt units bearing reactive Si–O–C‐containing substituents. The crosslinking was readily realized by using simple sol–gel chemistry in the presence of Sn‐catalyst. The formed crosslinked copolymers were insoluble in common organic solvents. Permeability coefficients of various gases (He, H2, O2, N2, CO2, CH4, C2H6, C3H8, n‐C4H10) in these copolymers before and after crosslinking were determined and the influence of the incorporated TCNSiOEt units as well as the crosslinking on gas transport properties were established. As a result, it was found that only a small reduction of gas‐permeability was observed when TNCSiOEt units were incorporated into the main chains, and the copolymers were crosslinked. At the same time, the selectivity for C4H10/CH4 pair was increased. The suggested approach has allowed obtaining crosslinked polymers from Si‐containing monomers without a loss of the main membrane characteristics. POLYM. ENG. SCI., 59:2502–2507, 2019. © 2019 Society of Plastics Engineers  相似文献   

8.
Integrally skinned asymmetric flat sheet membranes were prepared from poly(2,6‐dimethyl 1,4‐phenylene oxide)(PPO) for CO2–CH4 separation. Various experiments were carried out to identify PPO membranes, which have good mechanical strength and gas separation abilities. Membrane strength and selectivity depend on the interplay of the rate of precipitation and the rate of crystallization of the PPO. The effects of major variables involved in the membrane formation and performance, including the concentration of the polymer, solvent, and additive, the casting thickness, the evaporation time before gelation, and the temperature of the polymer solution, were investigated. Factorial design experiments were carried out to identify the factor effects. The membrane performance was modelled and optimized to approach preset values for high CO2 permeance and a high CO2 : CH4 permeance ratio. Membranes were prepared based on the optimum conditions identified by the model. Essentially, defect‐free membranes were prepared at these conditions, which resulted in a pure gas permeance of 9.2 × 10−9 mol/m2 s Pa for CO2 and a permeance ratio of 19.2 for CO2 : CH4. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1601–1610, 1999  相似文献   

9.
Crosslinked polybenzimidazole (PBI) was synthesised via free radical polymerisation between N‐vinylimidazole and vinylbenzyl substituted PBI. The degree of crosslinking increases with increasing content of the crosslinker. The phosphoric acid doping behaviour, mechanical properties, proton conductivity and acid migration stability of crosslinked PBI and linear PBI are discussed. The results show that the acid doping ability decreases with increasing degree of crosslinking of PBI. The introduction of N‐vinylimidazole in PBI is beneficial to its oxidation stability. The mechanical stability of crosslinked PBI/H3PO4 membrane is better than that of linear PBI/H3PO4 membrane. The proton conductivity of the acid doped membranes can reach ∼10–4 S cm–1 for crosslinked PBI/H3PO4 composite membranes at 150 °C. The temperature dependence of proton conductivity of the acid doped membranes can be modelled by an Arrhenius relation. The proton conductivity of crosslinked PBI/H3PO4 composite membranes is a little lower than that of linear PBI/H3PO4 membranes with the same acid content. However, the migration stability of H3PO4 in crosslinked PBI/H3PO4 membranes is improved compared with that of linear PBI/H3PO4 membranes.  相似文献   

10.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by quaternization to develop a positively charged dense network structure. According to this mechanism, PDMAEMA/polysulfone (PSF) positively charged nanofiltration membrane was developed by interfacial crosslinking polymerization using PSF plate microfiltration membrane as support layer, PDMAEMA aqueous solution as coating solution, and p‐xylylene dichloride/n‐heptane as crosslinking agent. Technique and condition of developing membrane such as concentration of coating solution, coating time, pH value of coating solution, content of low molecular weight additive in coating solution, concentration of crosslinking agent, crosslinking time, and number of coatings were studied. FTIR, SEM, and X‐ray photoelectron spectroscopy were used to characterize the structure of membranes. This membrane had rejection to inorganic salts in water solution, the rejection rate to MgSO4 (1 g/L water solution at 0.8 MPa and 30°C) was about 90%, and permeation flux was about 10–20 L m?2 h?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2721–2728, 2004  相似文献   

12.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
New type of composite membranes were synthesized by crosslinking of poly(vinyl alcohol) (PVA) with sulfosuccinic acid (SSA) and intercalating poly(1‐vinyl‐1,2,4‐triazole) (PVTri) into the resulting matrix. The complexed structure of the membranes was confirmed by Fourier transform infrared (FTIR) spectroscopy. The resulting hybrid membranes were transparent, flexible, and showed good thermal stability up to ~200°C. The proton conductivities of the membranes were investigated as a function of PVTri and SSA and operating temperature. The water/methanol uptake was measured and the results showed that solvent absorption of the materials increased with increasing PVTri content in the matrix. The proton conductivity of the membranes continuously increased with increasing SO3H content, PVTri content, and the temperature. In the anhydrous state, the maximum proton conductivity is 7.7 × 10?5 S/cm for PVA–SSA–PVTri‐1 and for PVA–SSA–PVTri‐3 is 1.6 × 10?5 S/cm at 150°C. After humidification (RH = 100%), PVA–SSA–PVTri‐4 showed a maximum proton conductivity of 0.0028 S/cm at 60°C. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
A series of blend membranes of poly(phenyl sulfone) (PPSU) with poly(bisphenol A‐co‐4‐nitrophthalic anhydride‐co‐1,3‐phenylenediamine) (PBNPI) were prepared through a solution casting method. This was done to examine the permeation characteristics of oxygen and nitrogen. The effect of the PPSU/PBNPI ratio on the membrane structure and O2/N2 separation performance were investigated. The results show that the permeability increased remarkably with the content of PPSU, whereas the selectivity decreased slightly. To enhance the selectivity of O2/N2, the blend membranes were further crosslinked with a p‐xylylenediamine agent via the immersion method. According to the Fourier transform infrared analysis, the N? H group was formed on the imide group of PBNPI. Therefore, we suggest that during the crosslinking modification, the PBNPI served as a crosslinkable polymer; this resulted in increased crosslinking efficiency with PBNPI content. The high‐resolution X‐ray diffraction and melting point method results show that crosslinking modification improved the selectivity with an acceptable loss in permeability along with increased crystallinity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
To improve the high‐temperature performance of proton exchange membranes, the polybenzimidazole (PBI)/α‐zirconium phosphate (α‐Zr(HPO4)2·nH2O, α‐ZrP) proton exchange composite membranes were prepared in this study. PBI polymer containing a large amount of ether units has been synthesized from 3,3′‐ diaminobenzidine (DAB) and 4,4′‐oxybis (benzoic acid) by a direct polycondensation in polyphosphoric acid. The polymer exhibited a good solubility in most polar solvents. Inorganic proton conductor α‐ZrP nanoparticles have been obtained using a synthesis route involving separate nucleation and aging steps (SNAS). The effects of α‐ZrP doping content on the composite membrane performance were investigated. It was found that the introduction of ZrP improved the thermal stability of the composite membranes. The PBI/ZrP composite membranes exhibited excellent mechanical strength. The composite membrane with 10 wt% ZrP showed the highest proton conductivity of 0.192 S cm?1 at 160°C under anhydrous condition. The proton conducting mechanism of the PBI/ZrP composite membranes was proposed to explain the proton transport phenomena. The experimental results suggested that the PBI/ZrP composite membranes may be a promising polymer electrolyte used in high temperature proton exchange membrane fuel cells (HT‐PEMFCs) under anhydrous condition. POLYM. ENG. SCI., 56:622–628, 2016. © 2016 Society of Plastics Engineers  相似文献   

16.
A tubular ceramic‐based multilayer composite nanofiltration membrane has been developed for dye desalination. Poly(acrylic acid)(PAA)/poly(vinyl alcohol)(PVA)/glutaraldehyde(GA) was dynamically assembled on to the inner surfaces of tubular ceramic microporous substrates which had been pretreated using dynasylan ameo silane coupling agents. Subsequently, the composite membranes were thermally crosslinked to form covalent ester bonds. Experimental results proved that the composite membrane had good nanofiltration performance for dye desalination. The (GA/PVA/PAA)3/ceramic multilayer membrane shows over 96% retention of Congo red and less than 3% NaCl retention using a permeate flux of about 25 L/(m2·h). An investigation of membrane performance as a function of operating conditions suggested that the covalent crosslinking multilayer membrane possessed much higher stability compared to other, electrostatically assembled, multilayer membranes. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3834–3842, 2013  相似文献   

17.
Microporous poly(ether sulfone) (PES) supported hybrid polymer–inorganic membranes were prepared by the crosslinking of poly(vinyl alcohol) (PVA), maleic acid (MA), and SiO2 via an aqueous sol–gel route and a solution‐casting method. The membrane performance was tested for the pervaporation separation of ethanol–water mixtures from 20 to 60 °C with a feed ethanol concentration of 96 wt %. The membrane characterization results reveal that different SiO2 loadings affected the crystallinity and roughness of the membranes. The PVA–MA–SiO2 membrane containing 10 wt % SiO2 showed that SiO2 nanoparticles were well dispersed within the polymer matrix; this resulted in significant enhancements in both the flux and selectivity. The membrane achieved a high water permeability of 1202 g·μm·m?2 h?1 kPa?1 and a selectivity of 1027 for the separation of a 96 wt % ethanol‐containing aqueous solution. This enhanced membrane performance might have been due to the dense crosslinking membrane network, increased free volume, and uniform distribution of SiO2 nanoparticles. Both the water and ethanol fluxes increased with the feed water concentration and temperature. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44839.  相似文献   

18.
Network formation was monitored by shear storage modulus (G′) during free radical crosslinking polymerization to investigate the effects of pH and ethylenediaminetetraacetic acid (EDTA; a complex agent). Three types of acrylic monomers, acrylic acid (AAc), 2‐acrylamidoglycolic acid (AmGc), and 2‐acrylamido‐2‐methyl propanesulfonic acid (AmPS), were polymerized in the presence of a crosslinking agent. The ratio of crosslinking agent (methylene bis‐acrylamide; MBAAm) to monomer was varied as: 0.583 × 10?3, 1.169 × 10?3, 1.753 × 10?3, and 2.338 × 10?3. G′ of the hydrogel in crosslinking polymerizations of AAc and AmPS was effectively increased by addition of EDTA, which was not the case for the crosslinking polymerization of AmGc. The order of magnitude of G′ differed based on the acidity of monomer. The maximum values of G′ in crosslinking polymerizations of AAc, AmGc, and AmPS were ~20,000 Pa, 6000 Pa, and 400 Pa, respectively. G′ varied linearly with the molecular weight between crosslinks (Mwc). pH and EDTA‐complex affected the rate of intramolecular propagation during crosslinking polymerization. Our results indicated that G′ was primarily affected by the following factors in the order: (1) acidity of monomer, (2) Mwc, and (3) physical interactions induced by pH and EDTA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41026.  相似文献   

19.
Three series of polybenzimidazole (PBI) copolymers (3,5‐pyridine‐r‐2OH‐PBI, 3,5‐pyridine‐r‐para‐PBI, and 3,5‐pyridine‐r‐meta‐PBI) were polymerized and cast into membranes by the polyphosphoric acid (PPA) process. Monomer pairs with high and low solubility characteristics were used to define phase stability‐processing windows for preparing membranes with high temperature membrane gel stability. Creep compliance of these membranes (measured in compression at 180 °C) generally decreased with increasing polymer content. Membrane proton conductivities decreased linearly with increasing membrane polymer content. Fuel cell performances of some high‐solids 3,5‐pyridine‐based copolymer membranes (up to 0.66 V at 0.2 A cm–2 following break‐in) were comparable to para‐PBI (0.68 V at 0.2 A cm–2) despite lower phosphoric acid (PA) loadings in the high solids membranes. Long‐term steady‐state fuel cell studies showed 3,5‐pyridine‐r‐para‐PBI copolymers maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm–2 for over 2,300 h. Phosphoric acid that was continuously collected from the long‐term study demonstrated that acid loss is not a significant mode of degradation for these membranes. The PBI copolymer membranes' reduced high‐temperature creep and long‐term operational stability suggests that they are excellent candidates for use in extended lifetime electrochemical applications.  相似文献   

20.
Poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) has been crosslinked using 4,4′‐diazidobenzophenone bisazide to improve its chemical and physical stability over time. Crosslinking PTMSP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PTMSP was due to decrease in diffusion coefficient. Compared with the pure PTMSP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (fumed silica, titanium dioxide), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O2/N2, H2/N2, CO2/N2, CO2/CH and H2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PTMSP membranes and PTMSP/filler nanocomposites over time. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号