首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
液-液水力旋流器中的液滴破碎   总被引:7,自引:0,他引:7  
在总结前人研究成果的基础上,分析了液-液水力旋流嚣中液滴破碎产生的原因,指出流场的湍流特性是产生液滴破碎的主要原因。对水力旋流器中的湍流度、雷诺切应力及颗粒的湍动能进行了分析,给出了水力旋流器中液滴破碎可能性较大的几个部位,并对旋流器边壁液滴破碎的可能性进行了讨论。分析了水力旋流器中液滴破碎的机理,阐明了液滴破碎判据——临界Weber数的表达式,并对理想球形液滴的破碎进行了分析。  相似文献   

2.
A multifractal model of the fine-scale structure of turbulence is applied to describe breakage of viscous drops of immiscible liquid immersed in a fully developed turbulent flow. A population of drops whose diameter falls within the inertial subrange of turbulence is considered here. The population balance equation is used to predict the drop size distributions. Calculations are performed for binary and multiple breakage. Several daughter distribution functions are applied and the results of their application are compared with experimental data. Experimental investigations of drop breakup were carried out in a flat bottom stirred tank having the diameter of and equipped with Rushton type agitator and four baffles. Silicone oils with viscosity of 10, 100, 500 and 1000 m Pa s were dispersed in the aqueous continuous phase. Measurements were performed using high resolution digital camera. Experimental results as well as numerical simulations show that after the initial period of multiple breakage, the strongly asymmetric type of binary breakage dominates.  相似文献   

3.
In this article, a new Eulerian model for breakup frequency of drops induced by inertial stress in homogeneous isotropic turbulence is developed for moderately viscous fluids, accounting for the finite response time of drops to deform. The dynamics of drop shape in a turbulent flow is described by a linear damped oscillator forced by the instantaneous turbulent fluctuations at the drop scale. The criterion for breakup is based on a maximum value of drop deformation, in contrast with the usual critical Weber criterion. The breakup frequency is then modeled as a function of the power spectrum of Weber number (or velocity square), based on the theory of oscillators forced by a random signal, which can be related to classical statistical quantities, such as dissipation rate and velocity variance. Moreover, the effect of viscosities of both phases is included in the breakup frequency model without resorting to any additional parameter. © 2018 American Institute of Chemical Engineers AIChE J, 65: 347–359, 2019  相似文献   

4.
本文介绍了动态旋流器的分离原理和结构特点,结合前人对液滴破碎的研究成果,分析了动态旋流器液滴破碎机理。通过对旋流器中湍动能的分析研究,总结出动态旋流器内液滴破碎的主要原因和部位。  相似文献   

5.
The bubble breakup after collision with a vortex ring was validated as source of breakup parameters for population balance modeling. This system was chosen as a deterministic alternative to the stochastic nature of bubble breakup studies under turbulent flow. The vortex ring was characterized by combining experimental visualization and numerical simulations. Breakup frequency, mean number of daughter bubbles, and its size distribution were obtained by high‐speed camera recording of the collision process. The dependence of breakup parameters on the size of the mother bubble and Weber number was determined.  相似文献   

6.
The mechanism of drop breakup inside SMX static mixers in the laminar flow regime was studied using experimental observations and computational fluid dynamics (CFD). The deformation and breakup of a single drop was simulated using the volume of fluid (VOF) model. It was observed that drops break up after collision with the leading edges and cross‐points of the bars in the SMX static mixer. It was found that drop collision with the bar cross‐points of the SMX static mixer elements is most effective for drop breakup. Elongation and folding result in drop breakup at the cross‐points.  相似文献   

7.
The study of phase dispersion of two immiscible fluids in different flows requires identifying the relevant breakup mechanisms. We propose here a detailed investigation of droplet breakup in a multifunctional exchanger-reactor of the vortex generator type in which transfer intensification is due to longitudinal vortical structures. We compare the efficiency of the mean gradients and turbulent mechanisms in droplet breakup in this industrial reactor. This efficiency is essentially characterized by the resulting distribution of droplet diameters. Then, the roles of the mean flow and the turbulent field, intensity, energy spectrum, and turbulence scales are examined in relation to the liquid/liquid dispersion in order to explore the governing mechanisms of drop breakup. In the complex flow considered here – nonhomogeneous and anisotropic turbulence at moderate Reynolds numbers (<15,000) – with weak turbulence intensity (about 10%), it can be demonstrated that turbulent breakup mechanisms largely dominate mean flow effects; elongation and shear effects are shown to have minor effects on the breakup mechanisms. Moreover, the global characteristic scales of the flow are not the relevant parameters in predicting the final size of the emulsion, but instead the Kolmogorov microscale, implying that the residence time in the reactor is not a limiting factor. Hence, the local dissipation rate governs the performance of the actual multifunctional reactor. This study provides some insight in the design and scaling-up of multiphase reactors.  相似文献   

8.
The drop break-up mechanism was studied in a stirred tank containing two immiscible liquids. The daughter drops formed by break-up of a single drop of known size were recorded photographically. From the experiments at constant agitator speed the following results were obtained. There is a critical drop size under which drops do not break up under given conditions. The break-up frequency increases approximately linearly with increase in drop volume. The number of daughter drops, v, is a random variable with a mean v > 2 which increases with the volume of the mother drop. The relative volume of a daughter drop has a β-distribution.  相似文献   

9.
The breakup of air bubbles in a turbulent water flow is studied experimentally. Water flows from a nozzle array, generating intense turbulence, and then flows downward through a cell. The velocity field is measured by PIV, and the local dissipation rate is estimated using a large‐eddy PIV technique. Bubbles (1.8 to 5 mm) are injected in the bottom of the cell and rise toward the region of intense turbulence, where they break. The time spent by bubbles in various zones without breaking and the number of breakups are evaluated, providing information about the breakup frequency. The number of daughter bubbles and their size distribution are determined. The number of daughters depends on a Weber number , where ? is the turbulent energy dissipation rate, D′ is the mother particle size, ρ and σ are the liquid density and surface tension. The daughter size distribution is a function of their number. © 2017 American Institute of Chemical Engineers AIChE J, 64: 740–757, 2018  相似文献   

10.
The present experimental and theoretical study investigates the fragmentation of the oil phase in an emulsion on its passage through a high-pressure, axial-flow homogenizer. The considered homogenizer contains narrow annular gap(s), whereupon the initially coarse oil drops break into fine droplets. The experiments were carried out using either a facility with one or two successive gaps, varying the flow rate and the material properties of the dispersed phase. The measured drop size distributions in the final emulsion clearly illustrated that the flow rate, as well as the dispersed-phase viscosity, and the interfacial tension can significantly affect the drop size after emulsification. The larger mean and maximum drop diameters obtained for the homogenizer with one gap in comparison to those obtained with two gaps (at the same Reynolds number and material parameters of the emulsion phases), highlighted the strong relevance of the flow geometry to the emulsification process. The numerical simulation of the carrier phase flow fields evolving in the investigated homogenizer was proven to be a very reliable method for providing appropriate input to theoretical models for the maximum drop size. The predictions of the applied droplet breakup model using input values from the numerical simulations showed very good agreement with the experimental data. In particular, the effect of the flow geometry—one-gap versus two-gaps design—was captured very well. This effect associated with the geometry is missed completely when using instead the frequently adopted concept of estimating input values from very gross correlations. It was shown that applying such a mainly bulk flow dependent estimate correlation makes the drop size predictions insensitive to the observed difference between the one-gap and the two-gaps cases. This obvious deficit, as well the higher accuracy, strongly favors the present method relying on the numerical simulation of the carrier phase flow.  相似文献   

11.
Several models for the daughter bubble/droplet size distribution are reviewed and a detailed discussion is given to get a better understanding of the daughter size distribution. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, based on an eddy-bubble/droplet collision method, is developed. It takes into account the energy distribution of turbulent eddies, effect of capillary pressure and surface energy increase during bubble/droplet breakup. An increase in the mother bubble/droplet size and energy dissipation rate increases the probability of unequal breakup. The model prediction is in good agreement with experimental results and the underlying physical situation.  相似文献   

12.
导叶式旋流器内油滴的聚结破碎及影响因素   总被引:2,自引:2,他引:0       下载免费PDF全文
王振波  马艺  金有海 《化工学报》2011,62(2):399-406
利用流场测试实验和模拟计算对导叶式旋流器的内部流场和湍流性能进行研究,得到导致旋流场中油滴发生聚结破碎现象的内因为时均速度梯度引起的黏性剪切力和湍流流动引起的高剪切应力及湍动能,并分析了油滴破碎的主要发生部位。同时为宏观考察导叶式旋流器内油滴聚结与破碎相对作用强弱,验证了旋流器的分离性能作为表征量的可行性,并在此基础上,利用导叶式旋流器的分离性能实验结果对油滴聚结破碎发生的外因进行研究,结果表明导向叶片的结构参数(叶片数和叶片出口角)和旋流器的操作参数(入口流速、溢流率、分散相入口浓度和操作温度)均会影响到油滴在旋流器中的存在和运动形态。  相似文献   

13.
张华海  王悦琳  李邦昊  王铁峰 《化工学报》2021,72(12):5936-5954
综述了充分发展湍流中气泡破碎的机理和模型,将其机理归纳为湍流涡碰撞、黏性剪切、尾涡剪切脱落过程和界面不稳定性四类。对文献中气泡破碎速率和子气泡大小分布的预测模型进行了系统总结。分析讨论了现有气泡破碎模型的发展和局限性,并提出了未来的发展方向。同时,也综述了湍流中单气泡破碎的实验研究,依据产生湍流的方法归纳为四种情况:增大液体流速产生湍流,采用内构件产生湍流,搅拌产生湍流,以及圆锥反应器结合搅拌产生湍流。总结了现有气泡破碎实验的进展和局限,并进行了分析和展望。最后,通过将文献中气泡破碎速率模型预测值和实验数据进行对比,表明文献中多个破碎模型已经有了较好的预测能力。  相似文献   

14.
Experimental study on drop formation in liquid-liquid fluidized bed   总被引:2,自引:0,他引:2  
Drop formation in liquid-liquid fluidized bed was investigated experimentally. The normal water was injected via a fine-capillary spray nozzle into the co-flowing No. 25 transformer oil with jet directed upwards in a vertical fluidized bed. Experiments under a wide variety of conditions were conducted to investigate the instability dynamics of the jet, the size and size distribution of the drops. Details of drop formation, drop flow patterns and jet evolution were monitored in real-time by an ultra-high-speed digital CCD (charge couple device) camera. The Rosin-Rammler model was applied to characterize experimental drop size distributions. Final results demonstrate that drop formation in liquid-liquid system takes place on three absolutely different developing regimes: bubbling, laminar jetting and turbulent jetting, depending on the relative Reynolds number between the two phases. For different flow domains, dynamics of drop formation change significantly, involving mechanism of jet breakup, jet length pulsation, mean size and uniformity of the drops. The jet length fluctuates with time in variable and random amplitudes for a specified set of operated parameters. Good agreement is shown between the drop size and the Rosin-Rammler distribution function with the minimum correlation coefficient 0.9199. The mean drop diameter decreases all along with increasing jet flow rate. Especially after the relative Reynolds number exceeds a certain value about 3.5×104, the jet disrupts intensely into multiple small drops with a diameter mainly ranging from 1.0 to and a more and more uniform size distribution. The turbulent jetting regime of drop formation is the most preferable to the dynamic ice slurry making system.  相似文献   

15.
By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and con-tinuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transfor-mation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.  相似文献   

16.
17.
Conditioning of an oil sand slurry is a critical step in the extraction of bitumen from oil sand ore. To model the conditioning process, a constant‐number Monte Carlo algorithm is used to simulate the mean‐field kinetics of coalescing bitumen drops and air bubbles. The coalescence rate of drops and bubbles is described by the model of Coulaloglou and Tavlarides (1977). Simulations yield results that are consistent with aerated bitumen drop sizes and conditioning times reported in the literature. The effects of turbulent energy, bitumen concentration, and initial bitumen drop size on the evolution of drop size distributions are investigated.  相似文献   

18.
刘世平  李佟茗 《化工学报》1998,49(4):409-417
主要分析各向同性湍流中的液滴聚并过程且建立了一个模型,用以预测表面活性剂系统和纯净系统中的最小稳定液滴直径,该模型不含任何可调参数或经验参数.在此基础上,进一步研究了液滴尺寸分布和聚并效率.  相似文献   

19.
Drop formation at a capillary tip in laminar flow is investigated experimentally. The disperse phase is injected via a needle into another co-flowing immiscible fluid. Two different drop formation mechanisms are distinguished: Either the drops are formed close to the capillary tip—dripping—or they break up from an extended liquid jet—jetting. The effect of the process and material parameters on the drop formation depends on the breakup mechanism and has to be investigated for each flow domain separately. In this study, we focus on dripping. The drop breakup is affected by the flow dynamics of both the disperse and the continuous phase. Consequently, we investigate the effect of flow rates, fluid viscosities and interfacial tension on the droplet size and observe the dynamics of satellite drop generation. Whereas the fundamentals of disperse fluid injection via a capillary into an ambient fluid have been investigated extensively, the focus of this article is on providing a comprehensive experimental data set for proving the applicability of this technique as a dispersing tool. It is shown that drop formation at a capillary tip into a co-flowing ambient liquid represents a promising technique for the production of monodisperse droplets where the droplet size is controlled externally by the flow strength of the continuous phase. The breakup dynamics changes significantly at the transition point from dripping to jetting. Consequently, the transition point between the flow domains represents an important operating point. In this article, dripping is demarcated from jetting by studying the influence of the various material and process parameters on the transition point.  相似文献   

20.
Most previous studies of liquid–liquid dispersion in complex geometry are limited to turbulent flow at low continuous phase viscosity. In this study, a viscous continuous phase was employed over a range of flow conditions including both the laminar and turbulent regimes. Equilibrium drop size was measured for water dispersed into viscous food grade mineral oils in a batch Silverson L4R rotor–stator mixer. The influence of fluid viscosities and interfacial tension (by adding an oil-soluble surfactant) were examined. In order to isolate the effect of drop breakage from coalescence, Part 1 is limited to dilute conditions (water phase fraction, ? = 0.001). In the laminar regime, drop breakup was more likely due to a simple shear breakage mechanism than one for extension. Following Grace (1982), a semi-empirical drop size correlation was developed. For turbulent flow, the validity of the sub-Kolmogorov inertial stress model for correlating equilibrium mean drop size was verified. Surfactants were found to mostly decrease drop size by lowering interfacial tension. Except for laminar systems near the critical micelle concentration, where Marangoni stresses appear to play some role, the effect of surfactants on the drop size could be correlated using the equilibrium or static interfacial tension. The influence of water phase fraction and coalescence is considered in Part 2 ( Rueger and Calabrese, 2013) of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号