首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
采用元胞自动机结合Laasraoui?Jonas 位错密度模型(LJ模型)模拟AZ31镁合金在动态再结晶过程中的位错密度和微观组织演化。LJ模型中的硬化参数、回复参数和应变速率灵敏系数决定模拟的准确性。在目前的研究中,基于 LJ 模型和 Kocks?Mecking 模型(KM 模型)求解硬化参数;采用动态再结晶中的稳态应力公式求解回复参数和应变速率灵敏系数。结果表明:模拟结果与实验结果一致。  相似文献   

2.
AZ31镁合金高温热压缩变形特性   总被引:34,自引:5,他引:34  
在应变速率为0.005~5 s-1、变形温度为250~450℃条件下,在Gleeble-1500热模拟机上对AZ31镁合金的高温热压缩变形特性进行了研究.结果表明:材料流变应力行为和显微组织强烈受到变形温度的影响;变形温度低于350℃时,流变应力呈现幂指数关系;变形温度高于350℃时,流变应力呈现指数关系;变形过程中发生了动态再结晶且晶粒平均尺寸随变形参数的不同而改变,其自然对数与Zener-Hollomon(Z)参数的自然对数成线性关系;材料动态再结晶机制受变形机制的影响,随温度的不同而改变;低温下基面滑移和机械孪晶协调变形导致动态再结晶晶粒的产生;中温时Friedel-Escaig机理下位错的交滑移控制动态再结晶形核;高温时位错攀移控制整个动态再结晶过程.在本实验下,材料的最佳工艺条件是:变形温度350~400℃,应变速率为0.5~5 s-1.  相似文献   

3.
在不同温度下对AZ31镁合金进行了热压缩,研究了试验合金高温变形时变形量与温度之间的关系以及组织演变.结果表明,随着温度升高,AZ31镁合金塑变能力增加,适宜在高于240 ℃进行热加工.非基面滑移系开动是AZ31镁合金塑性提高的主要原因.随着变形量的增大,晶粒逐渐细化.当变形量达70%时,晶粒细化至2~3 μm.发生动态再结晶是高温压缩过程中晶粒细化的主要原因.  相似文献   

4.
在200~300℃,应变速率10-3s-1时对挤压态AZ31镁合金进行拉伸试验,研究了温度及断面收缩率对镁合金动态再结晶的影响.结果表明:初始动态再结晶的临界应变约为峰值应变的0.8~0.87;随着温度升高或断面收缩率增加,动态再结晶分数增加,并建立了动态再结晶分数与断面收缩率之间的数学模型;动态再结晶晶粒尺寸随温度升高而增大,且再结晶晶粒直径与Z因子之间符合特定的指数关系.  相似文献   

5.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

6.
以AZ31镁合金在热压缩过程中微观组织演变为基础,结合元胞自动机模型(CA),建立了镁合金变形过程中再结晶晶粒尺寸模型和动态再结晶百分数模型。通过对铸态AZ31镁合金在不同变形条件下的热压缩实验,推导出镁合金的位错密度模型、临界位错密度模型、形核率模型和晶粒长大模型。结合元胞自动机具体演变规则,建立元胞自动机模型,并利用应力应变曲线及晶粒大小验证元胞自动机的模拟结果,验证该模型的准确性,结合实验数据和JMAK理论,推导出再结晶晶粒尺寸模型和动态再结晶百分数模型。借助DEFORM-3D分析软件得到镁合金在变形过程中,晶粒尺寸分布的变化情况以及动态再结晶百分数分布的变化情况。  相似文献   

7.
对具有粗大柱状晶的镁合金AZ31D材料进行了圆柱体热压缩试验研究.通过试验获得了该种材料在不同温度、不同应变速率条件下的真应力-应变曲线以及动态再结晶和晶粒细化的规律.应用峰值应力的试验结果计算出了该材料热变形过程的激活能及试验条件下的Z参数,得到了镁合金AZ31D的热变形过程以及动态再结晶过程的主要特征变量作为Z参数的函数表达式.试验发现,当Z≥(2.61E 6)s-1时,热压缩试验过程中会出现与试样端面成45°角的剪切断裂.  相似文献   

8.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

9.
精准预测镁合金管材在皮尔格轧制变形过程中的晶粒演变,对控制镁合金管材的最终性能具有重要参考意义,本文结合AZ31镁合金管材在皮尔格轧机上的轧制实验,建立基于动态再结晶、静态再结晶、静态回复、晶粒粗化及晶粒拓扑变形的元胞自动机模型,并借助有限元计算得出的每道次轧制结果,与元胞自动机结合起来,得到镁合金管材在轧制过程中的晶粒演变的动态特征,发现晶粒在轧制过程中产生连续再结晶并细化,并最终进行实验验证。  相似文献   

10.
AZ31镁合金初始动态再结晶的临界条件研究   总被引:3,自引:0,他引:3  
为确定AZ31镁合金初始动态再结晶的临界条件或临界应变,通过在变形温度范围473~623K、应变速率范围0.001-1 s^-1条件下进行等温压缩试验,利用所得数据并采用单参数方法,建立起AZ31镁合金初始动态再结晶的临界条件,即临界应变(εc)与变形条件(引入温度补偿应变速率因子即Zener-Hollomon参数)的定量关系,并对不同应变下合金微观组织的演变规律进行了研究。  相似文献   

11.
通过GLEEBLE压缩试验获得铸态AZ31B镁合金真应力应变曲线,本试验从真应力应变曲线出发,通过数值分析获得临界应力应变模型、饱和应力模型和稳态应力模型等多种应力模型。同时,结合位错理论和动态再结晶动力学,根据镁合金在变形过程中发生动态再结晶的临界点,将应力应变曲线分为两段,分别对以动态回复为主的曲线和以动态再结晶为主的曲线建立本构模型,分析并得出了动态再结晶分数与基于动态再结晶下的流变应力之间的变化规律。  相似文献   

12.
光滑粒子流体动力学方法(Smooth Particle Hydrodynamics,SPH)在求解大变形问题方面具有优势。基于SPH法编写程序对AZ31镁合金的BP-ECAP过程进行三维数值模拟,并与相关研究文献进行对比,验证了编写的SPH法背压程序的正确性。对不同工艺参数下AZ31镁合金的背压-等通道挤压过程进行模拟,并从等效塑性应变及损伤值分布角度进行分析。模拟结果表明,选择恰当的背压值能有效地阻止镁合金变形过程中裂纹的萌生及扩展。  相似文献   

13.
利用OM、XRD、SEM和EPMA等手段研究了Al-3Ti-3B细化剂对AZ31镁合金微观组织的影响。结果表明,添加适量的Al-3Ti-3B细化剂能使铸态AZ31镁合金粗大的树枝晶转变为均匀的等轴晶;加入量为0.4%时取得了较好的细化效果,固溶处理后的AZ31镁合金平均晶粒尺寸由300μm减小到50μm。TiB2和AlB2粒子的异质形核作用是促使晶粒细化的主要机制,且TiB2粒子在晶界上的偏聚可进一步阻碍晶粒长大。  相似文献   

14.
六次甲基四胺对AZ31镁合金的缓蚀作用研究   总被引:1,自引:0,他引:1  
为了表征六次甲基四胺(HMTA)对AZ31镁合金在MgSO4溶液中的缓蚀性能,用线性电位扫描、电化学阻抗谱等方法研究了合金在溶液中的电化学行为.结果表明,少量HMTA的加入能使AZ31镁合金的开路电位正移,极化电阻增大,从而发挥缓蚀效果.HMTA的添加量在0.1~0.15mmol/L范围时具有较好的缓蚀性能,并使活化电位负移,确保合金具有较好的电化学活性.  相似文献   

15.
The tensile tests of AZ31 magnesium alloy were carried out under room temperature, 100, 150 and 200 °C with and without pulse current. The effect of temperature on dynamic recrystallization(DRX) of AZ31 alloy was studied at different conditions. One-parameter approach was used to analyze the critical conditions of DRX, the critical stress was obtained under different temperatures, and the related results were validated by metallography observation. The results showed that DRX of AZ31 alloy occurred at 200 °C without pulse current. When pulse current with 150 Hz/50 V parameter was applied at room temperature, DRX occurred, while DRX was not completed until temperature over 150 °C. With the analysis result of critical conditions of DRX based on one-parameter approach, the relationship between critical stress and peak stress obtained in this present study is σ_c=(0.746–0.773)σ_p.  相似文献   

16.
采用同步轧制(NR)和异步轧制(AR)工艺对AZ31镁合金挤压板材进行了轧制,研究了轧制过程中组织和织构的演化,以及总压下量和异步比对轧材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,同步轧制与异步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。轧制过程中,在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使同步轧制与异步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;而当压下量达到24%时,孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替变化;异步轧制板材在压下量达到24%左右时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到0.163。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号