首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emerging software‐defined networking (SDN) paradigm introduces new opportunities to improve network performance due to the flexibility and programmability provided by a logically centralized element named controller. However, a rapid adoption of the full SDN architecture is difficult in the short term due to economic and technical reasons. This paper faces the SDN nodes replacement problem during the transition from traditional IP networks to fully deployed SDN networks. Six different replacement methods are proposed to select the most appropriate set of traditional IP nodes to be upgraded to SDN‐enabled switches at a particular transition stage. To show the effectiveness of the proposed methods, they have been applied on an optimization problem currently studied by the research community: the power consumption problem. An integer linear programming formulation is presented to solve it and a genetic algorithm is evaluated through simulations on realistic network topologies. Results highlight that energy‐efficiency in hybrid IP/SDN networks can be significantly improved by only replacing a reduced number of IP nodes.  相似文献   

2.
In view of the problems of low routing efficiency, complex control process, and difficult network management in big data environment in the traditional integrated space‐terrestrial network, in the paper, we propose a satellite network architecture called software‐defined information centric satellite networking (SDICSN) based on software‐defined networking (SDN) and information‐centric networking (ICN), and we design a virtual node matrix routing algorithm (VNMR) under the SDICSN architecture. The SDICSN architecture realizes the flexibility of network management and business deployment through the features of the separation of forwarding and controlling by the SDN architecture and improves the response speed of requests in the network by the centric of “content” as the ICN idea. According to the periodicity and predictability of the satellite network, the VNMR algorithm obtains the routing matrix through the relative orientation of the source and destination nodes, thus reducing the spatial complexity of the input matrix of the Dijkstra algorithm and then reducing the time complexity of the routing algorithm. For forwarding information base (FIB), the mechanism of combination of event driven and polling can be quickly updated in real time. Finally, the advantages of the SDICSN architecture in routing efficiency, request delay, and request aggregation are verified by simulation.  相似文献   

3.
Software‐defined networking (SDN) is a new network paradigm that is separating the data plane and the control plane of the network, making one or more centralized controllers to supervise the behaviour of the entire network. Different types of SDN controller software exist, and research dealing with the difficulties of consistently integrating these different controller types has mostly been declared future work. In this paper, the Domino framework is proposed, a pluggable SDN framework for managing heterogeneous SDN networks. In contrast to related work, the proposed framework allows research into SDN networks controlled by different types of SDN controllers attempting to standardize the northbound API of them. Domino implements a microservice plugin architecture where users can link different SDN networks to a processing algorithm. Such an algorithm allows for, eg, adapting the flows by building a pipeline using plugins that either invoke other SDN operations or generic data processing algorithms. The Domino framework is evaluated by implementing a proof‐of‐concept implementation, which is tested on the initial requirements. It achieves the modifiability and the interoperability with an average successful exchange ratio of 99.99%. The performance requirements are met for the frequently used commands with an average response time of 0.26 seconds, and the framework can handle at least 72 plugins simultaneously depending on the available amount of RAM. The proposed framework is evaluated by means of the implementation of a shortest path routing algorithm between heterogeneous SDN networks.  相似文献   

4.
Energy consumption is one of the most important design constraints when building a wireless sensor and actuator network since each device in the network has a limited battery capacity, and prolonging the lifetime of the network depends on saving energy. Overcoming this challenge requires a smart and reconfigurable network energy management strategy. The Software‐Defined Networking (SDN) paradigm aims at building a flexible and dynamic network structure, especially in wireless sensor networks. In this study, we propose an SDN‐enabled wireless sensor and actuator network architecture that has a new routing discovery mechanism. To build a flexible and energy‐efficient network structure, a new routing decision approach that uses a fuzzy‐based Dijkstra's algorithm is developed in the study. The proposed architecture can change the existing path during data transmission, which is the key property of our model and is achieved through the adoption of the SDN approach. All the components and algorithms of the proposed system are modeled and simulated using the Riverbed Modeler software for more realistic performance evaluation. The results indicate that the proposed SDN‐enabled structure with fuzzy‐based Dijkstra's algorithm outperforms the one using the regular Dijkstra's and the ZigBee‐based counterpart, in terms of the energy consumption ratio, and the proposed architecture can provide an effective cluster routing while prolonging the network lifetime.  相似文献   

5.
网络虚拟化使得智能能量感知网络部署成为可能,已有研究忽略了节点映射能耗最优化。本文把节点映射能耗优化问题转化为生产地与销售地之间物资运输代价最优化问题,建立高效节能节点映射运输模型。根据最大元素法,提出了混合一阶段与两阶段映射算法,在链路映射的约束下找到节点分配最小能耗代价最优解;利用主动休眠策略,提出了基于运输模型的主动休眠虚拟网络映射节能算法;利用节点可重复映射技术,提出了基于运输模型的节点可重复映射算法,进一步提高了底层网络资源休眠数量。仿真结果验证了本文所提算法能够显著降低系统能耗,适合大规模高效节能虚拟网络映射。  相似文献   

6.
刘光远  徐明伟 《电子学报》2020,48(7):1343-1347
本文研究了可生存虚拟网络多层映射问题,首先对其建立了整数线性规划模型(ILP),然后针对较大规模问题提出一种高效的启发式算法VNP-SVNME对其进行求解.实验表明,VNP-SVNME算法的资源映射开销相对ILP仅平均高15%,且优于现有的启发式可生存算法.此外,VNP-SVNME算法的映射时间相对ILP大大降低,可以满足在线虚拟网络映射的需求.  相似文献   

7.
The integration of 5G networks with cognitive radio (CR) technology enables the software‐defined networking (SDN) infrastructure to support emergency applications. In future, CR can be integrated with 5G and many wireless networks like Wi‐Fi, WSN, and MANET for efficient spectrum utilization with higher data rate and lower latency. This CR technology allows unlicensed users to access the licensed spectrum, whenever it is free. In this paper, an efficient SDN architecture with cognitive ability for emergency network is proposed in which the SDN controller prolong communication between disaster victims and first responders and so the first responders can arrive at the spot directly and rescue the victims. The SDN controller has cognitive ability so that the victims can utilize the vacant licensed band to communicate with the first responders, thereby improving the spectrum utilization of the network. Another two main challenges during emergency are the occurrence of interference and link failure. The proposed dynamic handover algorithm with interference cancellation (DHAIC) cancels the interference between the nodes inside the network and performs dynamic handoff, whenever link failure occurs between the cluster head (CH) and the controller. An optimum throughput and minimal delay is achieved to ensure the network performance.  相似文献   

8.
The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software‐defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy‐aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN‐based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.  相似文献   

9.
随着网络技术发展,以网络虚拟化为手段解决TCP/IP网络体系结构僵化问题已成为未来网络领域发展的主流方向之一.SDN(software defined networking,软件定义网络)作为一种新兴的网络体系结构,为网络虚拟化提供了有效的解决方案.首先总结了当前具有代表性的SDN网络虚拟化平台,并对比了SDN与传统网络环境中部署虚拟网的区别,然后针对SDN网络虚拟化平台中的虚拟网络映射问题,提出一种时延敏感的虚拟化控制器放置算法,最后通过实验验证了该算法在提高网络资源的利用效率的同时,保证了控制器与底层交换机的通信时延在可接受范围之内.  相似文献   

10.
The recent developments in collaborative search, acquisition, and tracking have hoisted the geographical barrier. The network between unmanned aerial vehicles (UAVs) and wireless sensor networks (WSNs) is one such collaboration, which comprises battery‐powered static sensor nodes that act as sources and sinks and UAVs that act as relays. This collaborative network presents with opportunities and advantages, but at the same time, configuration of such networks is an arduous task. The WSN nodes are characterized by constant depleting power. Their network itself requires constant management and reconfiguration. These requisites can be slaked through the formation of an efficient data dissemination algorithm, which acclimates according to the network state. Considering this, a data dissemination approach is presented in this paper, which constructs a virtual topology predicated on the charge of WSN nodes utilizing software‐defined networks (SDNs) through UAVs. The topology is constantly monitored and reconfigured when required. The aerial nodes are equipped with multiple‐input multiple‐output (MIMO) antennas in order to facilitate simultaneous communication with the ground nodes, the base station, and the SDN controller. An efficient sleep timer and backoff counter strategies are also utilized by the proposed approach. The SDN controller facilitates the topology formation and maintenance of a sleep timer and a backoff counter. The proposed model is compared with clustered hierarchical layouts and hexagonal cell layouts through the network simulations. The results suggest significant improvements in the proposed model for various metrics, such as lifetime, delay, latency, delivery ratio, and throughput in comparison with the existing solutions.  相似文献   

11.
For the reliability of controllers in a software defined network (SDN), a dynamic and self‐learning schedule method (DSL) is proposed. This method is original and easy to deploy, and optimizes the combination of multiple controllers. First, we summarize multiple controllers’ combinations and schedule problems in an SDN and analyze its reliability. Then, we introduce the architecture of the schedule method and evaluate multi‐controller reliability, the DSL method, and its optimized solution. By continually and statistically learning the information about controller reliability, this method treats it as a metric to schedule controllers. Finally, we compare and test the method using a given testing scenario based on an SDN network simulator. The experiment results show that the DSL method can significantly improve the total reliability of an SDN compared with a random schedule, and the proposed optimization algorithm has higher efficiency than an exhaustive search.  相似文献   

12.
Network function virtualization (NFV) technology achieves flexible service deployment by replacing the middleboxes with virtual network functions (VNFs). In NFV, a set of VNFs are chained in a given order, called service function chain (SFC), and accordingly, data flow is steered to traverse all the VNFs in order to offer a service. With a large number of network devices and end users being connected into Internet, there is a growing demand for large‐scale multi‐domain networks to dynamically deploy the SFC across multiple network domains, in order to support efficient service provisioning. To this end, in this paper, we first investigate the state of the art of multi‐domain SFC deployment, and then propose an intelligent multi‐domain SFC deployment (IMSD) architecture by leveraging software‐defined networking (SDN), NFV, and deep learning technologies. Furthermore, we discuss the potential challenges to realize the IMSD and provide some promising solutions.  相似文献   

13.
Software‐defined networking (SDN) facilitates network programmability through a central controller. It dynamically modifies the network configuration to adapt to the changes in the network. In SDN, the controller updates the network configuration through flow updates, ie, installing the flow rules in network devices. However, during the network update, improper scheduling of flow updates can lead to a number of problems including overflowing of the switch flow table memory and the link bandwidth. Another challenge is minimizing the network update completion time during large‐network updates triggered by events such as traffic engineering path updates. The existing centralized approaches do not search the solution space for flow update schedules with optimal completion time. We proposed a hybrid genetic algorithm‐based flow update scheduling method (the GA‐Flow Scheduler). By searching the solution space, the GA‐Flow Scheduler attempts to minimize the completion time of the network update without overflowing the flow table memory of the switches and the link bandwidth. It can be used in combination with other existing flow scheduling methods to improve the network performance and reduce the flow update completion time. In this paper, the GA‐Flow Scheduler is combined with a stand‐alone method called the three‐step method. Through large‐scale experiments, we show that the proposed hybrid approach could reduce the network update time and packet loss. It is concluded that the proposed GA‐Flow Scheduler provides improved performance over the stand‐alone three‐step method. Also, it handles the above‐mentioned network update problems in SDN.  相似文献   

14.
虚拟网映射是网络虚拟化研究中亟待解决的问题,针对已有映射算法中存在的对于网络拓扑信息利用不足的现状,该文提出了基于资源区域聚集度的虚拟网映射算法(RCI-VNE)。在映射预处理阶段,根据局部拓扑信息和区域资源聚集度提出节点区域资源聚集评价算法。在节点映射阶段,提出一种基于节点区域资源聚集排名的2-近邻聚集映射算法,该算法将虚拟网节点集中映射到底层网络中可用资源丰富的区域,减小承载链路的长度。实验结果表明,该算法降低了虚拟网映射开销,且具有较高的虚拟网请求接受率和较低的平均执行时间。  相似文献   

15.
The fiber‐wireless (FiWi) access network is a very promising solution for next‐generation access networks. Because of the different protocols between its subnets, it is hard to globally optimize the operation of FiWi networks. Network virtualization technology is applied to FiWi networks to realize the coexistence of heterogeneous networks and centralized control of network resource. The existing virtual resource management methods always be designed to optimize virtual network (VN) request acceptance rate and survivability, but seldom consider energy consumption and varied requirements of quality of service (QoS) satisfaction, which is a hot and important topic in the industrial field. Therefore, this paper focuses on the QoS‐aware cross‐domain collaborative energy saving mechanism for FiWi virtual networks. First, the virtual network embedding (VNE) model, energy consumption model, and VNE profit model of FiWi networks are established. Then, a QoS‐aware in‐region VN embedding mechanism is proposed to guarantee service quality of different services. After that, an underlying resource updating mechanism based on energy efficiency awareness is designed to realize low‐load ONU and wireless routers co‐sleep in FiWi networks. Finally, a QoS‐aware re‐embedding mechanism is presented to allocate proper resource to the VNs affected by the sleeping mechanism. Especially for video VNs, a re‐embedding scheme which adopts traffic splitting and multipath route is introduced to meet resource limitation and low latency. Simulation results show that the proposed mechanism can reduce FiWi network's energy consumption, improve VNE profit, and ensure high embedding accepting rate and strict delay demand of high‐priority VNs.  相似文献   

16.
SummarySoftware‐defined network (SDN) is constructed by decoupling the control and data plane from the forwarding devices. The control plane operations are managed by centralized or distributed controllers, and the data plane operation is managed by respective forwarding devices. SDN provides an easy and efficient management solutions for software‐programmed consolidated middlebox in virtual machines. Additionally, SDN with centralized controller faces complications like scalability, network bottle neck, and single point failure. In this study, a stateful inspection firewall acts as a middlebox in distributed SDN‐controlled network. The controller is programmed with a failure detection and recovery mechanism to provide reliability and redundancy and enhance the overall performance of the network. The objective of stateful firewall on SDN architecture is to secure the network by monitoring the current connections and maintain its state information until the connection is active. In this paper, the performance of firewall‐enabled SDN with centralized and distributed controllers are measured, compared, and analyzed. The experiments are done using POX controller, and the results are verified by Mininet network emulation tool. The results show that the stateful firewall‐enabled SDN with distributed controller network improves the security, reliability, availability, and overall performance of the network. In the proposed SDN, average network throughput is improved by 43%, average network delay is reduced by 4%, average channel utilization is increased by 40%, average network overhead is reduced by 26%, and average network response time is reduced by 23%.  相似文献   

17.
The virtual resource management architecture for satellite networks currently suffers from a very poor virtual network mapping success rate. This arises because of the need to map multiple heterogeneous virtual networks to the underlying satellite network. Most heuristic algorithms divide virtual network mapping into node mapping and link mapping, which aims to reduce the complexity of the problem. However, this approach is not well suited to highly dynamic satellite networks. In this paper, we propose a hybrid virtual network mapping algorithm that is based on threshold load. This takes the overall load for the nodes as its optimization objective, and combines the idea of backtracking contained in 1‐stage mapping methods and the idea of global optimization contained in 2‐stage mapping methods. The algorithm reduces the complexity of backtracking computation, while avoiding any incompleteness that might result from separating nodes and link mapping. The success rate for virtual network mapping is thus improved, as is the utilization rate for satellite network resources.  相似文献   

18.
Network virtualization provides a powerful way of sharing substrate networks. Efficient allocation of network resources for multiple virtual networks (VNs) has always been a challenging task. In particular, with the demands of the customized VN requests are increasing, many problems arise as network conditions change dynamically. Especially, when the resources conflicting appear during the lifetime of VNs, it needs service provider (SP) to provide a fast and effective solution. Recently, software defined network (SDN) has emerged as a new networking paradigm, SDN’s centralized control and customizable routing features present new opportunities for convenient and flexible embedding VNs in the network. However, due to the limitations of the SDN, in the short term, replacing all legacy devices in current operational networks by SDN-enabled switches is impractical. Thus, in our study, we focus on the scenario of VN embedding (VNE) in software-defined hybrid networks. In this work, first of all, we propose partially deploying SDN nodes, and then, we use the characteristics of SDN to allocate resources for VN requests, and redirect the path for requests conflict in hybrid SDN network. We formulate the problems and provide simple algorithms to solve them. Simulation results show that our scheme is high responsiveness and acceptance ratio.  相似文献   

19.
The virtual network embedding/mapping problem is a core issue of the network virtualization.It's mainly concerned with how to map virtual network requests to the substrate network efficiently.Previous ...  相似文献   

20.
请求接受率和节能是虚拟网映射过程中两个至关重要的指标,然而当前虚拟网映射问题的研究仅考虑单一指标,忽略了两者之间的关联和制约,导致虚拟网映射整体性能下降。该文提出一种基于纳什议价的虚拟网多目标映射算法(MOVNE-NB):利用博弈论谈判技术,在纳什议价的框架下协商虚拟网映射的合理解;提出公平议价机制,避免参与人自私决策而导致议价失败。实验表明,MOVNE-NB算法不仅能产生一个帕累托有效解,且实现了请求接受率和节能的公平折中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号