共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present research article, an indirect type solar cooking system has been developed for indoor cooking. In the proposed cooking system, a cooking pot has been placed at a distance of 5 m from the parabolic dish collector, and the heat has been transmitted from the collector to the cooking pot by means of heat transfer fluid. A gear pump of 40 W and insulated pipes have been used to circulate the fluid. A number of experiments have been performed to analyze the performance of the cooking system. During the investigation, the system achieved the temperature of the heat transfer fluid up to 175°C. The time taken for cooking the rice and the black grams has been observed 21 and 68min, respectively. The average thermal efficiency of the proposed system for the entire day has been achieved at 13.11%. 相似文献
2.
This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased. 相似文献
3.
In this study, a conventional steam power plant with two regenerative boilers is considered, and one of its boilers is replaced with parabolic solar dish collectors and storing the produced thermal energy by the phase change material (PCM) in a storage tank. The results show the necessity of the existence of an auxiliary fired‐gas boiler to provide constant load during the whole 24 hours. The performance of the proposed hybridized system is evaluated through energy and exergy analyses. It was demonstrated that substituting solar collectors with one of the boilers marginally lowers the energy efficiency but increases the exergy efficiency of the whole power plant up to 41.76%. Moreover, it is found out that this hybridization decreases the total irreversibility of the power plant in comparison with the base case, from 51.1 to 47.2 MW. The parametric analysis states that raising the mass flow rate of the heat transfer fluid in the solar collectors not only enhances the system performance but also increases the volume of the PCM tank. 相似文献
4.
Steam cooking is beneficial over other cooking techniques like boiling since it preserves more vitamins lost during other methods. In this study, a novel solar food steamer (SFS) based on a parabolic dish concentrator (PDC) is designed and constructed for domestic food preparation. A straightforward fabrication process of a 2.626 m2 PDC with design calculations is also presented. The system's instantaneous energy and exergy efficiency evaluation has been examined from different tests over three consecutive days. The system's high energetic and exergetic efficiency was achieved in the case of sweet potato, that is, 72.83% and 15.14%, respectively. In the case of dried chickpeas, the maximum steaming duration of 70 min was attained, along with an energy efficiency of 47.74% and an exergy efficiency of 10.07%. In addition, an economic analysis was performed to determine the payback time in terms of cost and utility. The payback time for the proposed method is 2.4 years. The SFS may save 43 kg/month of carbon dioxide from escaping into the atmosphere; it can be considered an environmentally valuable device. 相似文献
5.
Dish‐Stirling concentrated solar power (DS‐CSP) system is a complex system for solar energy‐thermal‐electric conversion. The dish concentrator and cavity receiver are optical devices for collecting the solar energy in DS‐CSP system; to determine the geometric parameters of dish concentrator is one of the important steps for design and development of DS‐CSP system, because it directly affects the optical performance of the cavity receiver. In this paper, the effects of the geometric parameters of a dish concentrator including aperture radius, focal length, unfilled radius, and fan‐shaped unfilled angle on optical performance (ie, optical efficiency and flux distribution) of a cavity receiver were studied. Furthermore, the influence of the receiver‐window radius of the cavity receiver and solar direct normal irradiance is also investigated. The cavity receiver is a novel structure that is equipped with a reflecting cone at bottom of the cavity to increases the optical efficiency of the cavity receiver. Moreover, a 2‐dimensional ray‐tracking program is developed to simulate the sunlight transmission path in DS‐CSP system, for helping understanding the effects mechanism of above parameters on optical performance of the cavity receiver. The analysis indicates that the optical efficiency of the cavity receiver with and without the reflecting cone is 89.88% and 85.70%, respectively, and former significantly increased 4.18% for 38 kW XEM‐Dish system. The uniformity factor of the flux distribution on the absorber surface decreases with the decreases of the rim angle of the dish concentrator, but the optical efficiency of the cavity receiver increases with the decreases of the rim angle and the increase amplitude becomes smaller and smaller when the rim angle range from 30° to 75°, So the optical efficiency and uniformity factor are conflicting performance index. Moreover, the unfilled radius has small effect on the optical efficiency, while the fan‐shaped unfilled angle and direct normal irradiance both not affect the optical efficiency. In addition, reducing the receiver‐window radius can improve the optical efficiency, but the effect is limited. This work could provide reference for design and optimization of the dish concentrator and establishing the foundation for further research on optical‐to‐thermal energy conversion. 相似文献
6.
The nonuniform and high‐gradient solar radiation flux on the absorber surface of solar dish concentrator/cavity receiver (SDCR) system will affect its operational reliability and service lifetime. Therefore, homogenization of the flux distribution is critical and important. In this paper, 2 mirror rearrangement strategies and its optimization method by combining a novel ray tracing method and the genetic algorithm are proposed to optimize the parabolic dish concentrator (PDC) so as to realize the uniform flux distribution on the absorber surface inside the cavity receiver of SDCR system. The mirror rearrangement strategy includes a mirror rotation strategy and mirror translation strategy, which rotate and translate (along the focal axis) each mirror unit of the PDC to achieve multipoint aiming, respectively. Firstly, a correlation model between the focus spot radius and mirror rearrangement parameters is derived as constraint model to optimize the PDC. Secondly, a novel method named motion accumulation ray‐tracing method is proposed to reduce the optical simulation time. The optical model by motion accumulation ray‐tracing method and optimization model of SDCR system are established in detailed, and then, an optimization program by combining a ray‐tracing code and genetic algorithm code in C++ is developed and verified. Finally, 3 typical cavity receivers, namely, cylindrical, conical, and spherical, are taken as examples to fully verify the effectiveness of these proposed methods. The results show that the optimized PDC by mirror rearrangement strategies can not only greatly improve the flux uniformity (ie, reduce the nonuniformity factor) and reduce the peak local concentration ratio of the absorber surface but also obtain excellent optical efficiency and direct useful energy ratio. A better optimization results when the PDC is optimized by mirror rotation strategy at aperture radius of 7.0 m, focal length of 6.00 m, and ring number of 6; the nonuniform factor of the cylindrical, conical, and spherical cavity receivers is greatly reduced from 0.63, 0.67, and 0.45 to 0.18, 0.17, and 0.26, respectively; the peak local concentration ratio is reduced from 1140.00, 1399.00, and 633.30 to 709.10, 794.00, and 505.90, respectively; and the optical efficiency of SDCR system is as high as 92.01%, 92.13%, and 92.71%, respectively. These results also show that the dish concentrator with same focal length can match different cavity receivers by mirror rearrangement and it can obtain excellent flux uniformity. 相似文献
7.
A stand-alone triple basin solar desalination system is experimentally tested and the results are discussed in this paper. This system mainly consists of a triple basin glass solar still (TBSS), cover cooling (CC) arrangement, parabolic dish concentrator (PDC) and photovoltaic (PV) panel. Four triangular hollow fins are attached at the bottom of the upper and middle basin in order to increase the heat transfer rate and place the energy storing materials. The performance of the system is studied by, conventional TBSS system, integrating the TBSS with CC, TBSS with PDC, and TBSS with CC and PDC. Also, each configuration is tested further by using fins without energy storing material, fins filled with river sand, and fins filled with charcoal. The results of the test reveal that, TBSS with charcoal and TBSS with river sand enhance the distillate by 34.2 and 25.6% higher than conventional TBSS distillates. TBSS with cover cooling reduces the glass temperature to about 8 °C compared to the conventional TBSS. The presence of concentrator increases the lower basin water temperature upto 85 °C. The maximum distillate yield of 16.94 kg/m2.day is obtained for TBSS with concentrator, cover cooling and charcoal in fins. 相似文献
8.
Development and performance analysis of a two‐axis solar tracker for concentrated photovoltaics 下载免费PDF全文
This study presents a two‐axis solar tracking system equipped with a small concentrator module for electricity generation through a multijunction solar cell. The system can accurately track the sun without the need of calibration for an extended period and operate as a stand‐alone system. High‐precision solar tracking was achieved by a combination of open‐loop and closed‐loop controls. A camera tracking sensor was introduced as a feedback device in closed‐loop control. Two different types of solar concentrator modules were designed and fabricated. Their concentration ratios were analyzed against solar tracking errors by means of ray tracing software. One is made up of a paraboloidal primary concentrator and a paraboloidal secondary reflector, whereas the other has a paraboloidal primary concentrator and a hyperboloidal secondary reflector. Both modules showed an almost identical concentration ratio of 610 provided that the solar tracker is pointing perfectly at the sun. However, their performance differs considerably when tracking error is present. The maximum power output was obtained near solar noon with multijunction cells, whose average solar conversion efficiency was 21%, much higher than that of conventional photovoltaic systems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
In this paper, the authors propose an innovative non‐tracking three‐dimensional compound parabolic concentrator (3‐D CPC) solar collector, which has excellent thermal efficiency for a high‐temperature range (100–200°C). In the past studies, in order to improve the thermal efficiency of the solar collector in a high‐temperature range, very high concentration ratios and tracking systems have been adopted. However, conventional high concentration solar collectors are not cost‐effective and are inappropriate for small‐rating thermal electric generation systems for residential use. The proposed 3‐D CPC collector has a moderate concentration ratio and does not need tracking. Initially, the tentative 3‐D CPC collector was fabricated and its thermal performance was tested. Next, numerical simulations of the optical characteristics of the 3‐D CPC collector were carried out via the ray‐tracing method. Finally, the specification of the optimal 3‐D CPC collector was clarified. Applications of the thermal electric system will also be mentioned. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 323–335, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20121 相似文献
10.
Process heat produced by solar collectors can contribute significantly in the conservation of conventional energy resources, reducing CO2 emission, and delaying global warming. One of the major problems associated with solar process heat application is fluctuation in system temperature during unsteady state radiation conditions which may cause significant thermal and operation problems. In this paper a transient simulation model is developed for analysing the performance of industrial water heating systems using parabolic trough solar collectors. The results showed that to prevent dramatic change and instability in process heat during transient radiation periods thermal storage tank size should not be lower than 14.5 l m?2 of collector area. Small periods of radiation instability lower than 30 min do not have significant effect on system operation. During these periods when water flow rate of collector loop is doubled the time required to restore system normal operating condition increased by a ratio of 1.5. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
槽式太阳聚光器的研究 总被引:1,自引:0,他引:1
提出了一种低倍聚光的抛物面槽式聚光光伏发电方式.从聚光器的聚光比入手,推导抛物面槽式聚光的能流聚光比的公式,分析了能流聚光比和各个参数的关系.依据这些关系式制成的低倍聚光装置适宜于普及,可节约光伏装置成本,增加光伏发电量. 相似文献
12.
分析了跟踪方式和太阳张角对理想槽式抛物面反射镜的影响,给出了几何聚光比、相对口径、能流分布、边界角之间的函数关系式。在理想情况下,边界角δ为44.87°时,槽式聚光器的最大聚光比为212.59,此时相对口径为1.652 m。讨论了北京、上海、昆明等地单轴跟踪在全年不同时刻入射角余弦值的变化规律。采取东-西水平轴跟踪时,入射角余弦值与各地纬度无关;采取南-北水平轴跟踪时,春冬两季每天不同时刻入射角的变化范围较大,夏秋两季的变化范围较小。文章针对不同宽度太阳电池和聚光比对抛物镜面参数进行了设计分析。 相似文献
13.
The present study has been conducted using nanofluids and molten salts for energy and exergy analyses of two types of solar collectors incorporated with the steam power plant. Parabolic dish (PD) and parabolic trough (PT) solar collectors are used to harness solar energy using four different solar absorption fluids. The absorption fluids used are aluminum oxide (Al2O3) and ferric oxide (Fe2O3)‐based nanofluids and LiCl‐RbCl and NaNO3‐KNO3 molten salts. Parametric study is carried out to observe the effects of solar irradiation and ambient temperature on the parameters such as outlet temperature of the solar collector, heat rate produced, net power produced, energy efficiency, and exergy efficiency of the solar thermal power plant. The results obtained show that the outlet temperature of PD solar collector is higher in comparison to PT solar collector under identical operating conditions. The outlet temperature of PD and PT solar collectors is noticed to increase from 480.9 to 689.7 K and 468.9 to 624.7 K, respectively, with an increase in solar irradiation from 400 to 1000 W/m2. The overall exergy efficiency of PD‐driven and PT‐driven solar thermal power plant varies between 20.33 to 23.25% and 19.29 to 23.09%, respectively, with rise in ambient temperature from 275 to 320 K. It is observed that the nanofluids have higher energetic and exergetic efficiencies in comparison to molten salts for the both operating parameters. The overall performance of PD solar collector is observed to be higher upon using nanofluids as the solar absorbers. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
In this communication, a 50 MWe design capacity parabolic dish Stirling engine solar power plant (PDSSPP) has been modeled for analysis, where 2000 units of parabolic dish Stirling engine each having capacity of 25 kWe were considered to get desired capacity. An attempt has been made to carry out the energetic and exergetic analysis of different components of a solar power plant system using parabolic dish collector/receiver and Stirling engine. The energetic and exergetic losses as well as efficiencies for typical PDSSPP under the typical operating conditions have been evaluated. Variations of the efficiency of Stirling engine solar power plant at the part‐load condition are considered for year‐round performance evaluation. The developed model is examined at location Jodhpur (26.29°N, 73.03°E) in India. It is found that year‐round energetic efficiency varies from 15.57% to 27.09%, and exergetic efficiency varies from 16.83% to 29.18%. The unit cost of electric energy generation (kWeh) is about 8.76 Indian rupees (INR), with 30 years life span of the plant and 10% interest rate on investment. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
With the world energy shortage problem becoming increasingly prominent, more and more attentions have been paid to the development of renewable energies. Among these sources, solar energy has received extensive attention with its excellent characteristics. The thermal state affects the safety of the solar heat collection system. In this paper, real‐time monitoring of the input heat flux on the inside wall and the temperature field simultaneously of an absorber tube for parabolic trough solar collector were studied. Based on the measured temperatures on the outside wall, the fuzzy adaptive Kalman filter coupled with weighted recursive least squares algorithm (WRLSA) was employed to monitor the heat states of the absorber tube inversely, in which WRLSA was used to acquire the heat flux while fuzzy adaptive Kalman filter was adopted to monitor the temperature field. The method showed strong robustness to resist the ill‐posedness. Accurate monitoring results also can be acquired when there are random disturbances of the heat transfer condition on the inner wall. 相似文献
16.
Duofu Song Hui Lv Jun Liao Wenjuan Huang Sihao Huang Chunfu Cheng Huiliang Zhou Yuehong Su Saffa Riffat 《国际能源研究杂志》2018,42(6):2234-2245
To utilize solar energy more efficiently and reduce lighting power consumption in underground public spaces such as car park, a large dish‐type concentrator solar lighting system is put forward along with its evaluation, which is a unique design to apply a laminated layer of beam split thin‐film coating and thin‐film solar cells onto the dish reflector. The collected sunlight is split into 2 parts, one being reflected into a fiber optical bundle and transmitted for daylighting, while the rest being absorbed by solar cells for electricity generation as the other way to replenish daylighting. A set of 4 solar lighting systems using 3.28‐m diameter dish are designed to meet the lighting requirement in a 1771‐m2 underground car park. A mathematical model is adopted to calculate the output power and conversion efficiency of solar cells distributed on the parabolic dish surface. The indoor illuminance distribution is given by lighting simulation. The results indicate that the average daylight illuminance in the car park can vary between 62.7 and 284 lx on February 25, 2016 and between 62.7 and 353 lx on August 17, 2016 for 2 chosen days, respectively. For the presented design, the electricity produced by solar cells is just enough to power light‐emitting diodes for lighting meeting a criterion at night. Considering about 19% conversion efficiency of solar cells and the efficacy of 129.5 lm/W of light‐emitting diodes, the hybrid solar lighting system can have about 40% utilization ratio of solar energy, so it can be concluded that a sufficient lighting provision can be provided by the proposed large dish‐type concentrator solar lighting system for applications in underground car park. 相似文献
17.
An optimized solar dish collector (OPSDC) system was proposed in our previous work, which can achieve excellent the optical efficiency and flux uniformity under ideal optics. On this basis, the impacts of the non-ideal optical factors on the optical performance of OPSDC system with a cylindrical and conical receiver are studied in detail and compared with the conventional solar dish collector (COSDC) system in this paper. Where the non-ideal optical factors considered are relatively comprehensive, including the mirror slope error, tracking error, installation error of the mirror and receiver, and receiver's absorptivity degeneration. An optical model with the non-ideal optical factors is built in detail by the ray tracing method, and the corresponding ray tracing codes are developed and verified by literatures and optical software OptisWorks 2012. The results show that the OPSDC system not only has a significantly smaller peak local concentration ratio (LCR) and non-uniformity factor than the COSDC system under the same non-ideal optical factor, but also has excellent optical performance. This means that OPSDC system can effectively avoid the heat absorber generating high-temperature hot spots, thus significantly improving its working reliability and service lifetime. In addition, the tracking error, installation error of the receiver and mirror all lead to the increase of the peak LCR and non-uniform factor, while the mirror slope error and absorber's absorptivity degeneration are conducive to reducing the peak LCR and non-uniform factor. This work can provide a reference for error control of COSDC system and OPSDC system in manufacturing, installation and operation. 相似文献
18.
Parabolic trough solar collector (PTSC) is one of the most proven technologies for large‐scale solar thermal power generation. Currently, the cost of power generation from PTSC is expensive as compared with conventional power generation. The capital/power generation cost can be reduced by increasing aperture sizes of the collector. However, increase in aperture of the collector leads to higher heat flux on the absorber surface and results in higher thermal gradient. Hence, the analysis of heat distribution from the absorber to heat transfer fluid (HTF) and within the absorber is essential to identify the possibilities of failure of the receiver. In this article, extensive heat transfer analysis (HTA) of the receiver is performed for various aperture diameter of a PTSC using commercially available computational fluid dynamics (CFD) software ANSYS Fluent 19.0. The numerical simulations of the receiver are performed to analyze the temperature distribution around the circumference of the absorber tube as well as along the length of tube, the rate of heat transfer from the absorber tube to the HTF, and heat losses from the receiver for various geometric and operating conditions such as collector aperture diameter, mass flow rate, heat loss coefficient (HLC), HTF, and its inlet temperature. It is observed that temperature gradient around the circumference of the absorber and heat losses from the receiver increases with collector aperture. The temperature gradient around the circumference of the absorber tube wall at 2 m length from the inlet are observed as 11, 37, 48, 74, and 129 K, respectively, for 2.5‐, 5‐, 5.77‐, 7.5‐, and 10‐m aperture diameter of PTSC at mass flow rate of 1.25 kg/s and inlet temperature of 300 K for therminol oil as HTF. To minimize the thermal gradient around the absorber circumference, HTFs with better heat transfer characteristics are explored such as molten salt, liquid sodium, and NaK78. Liquid sodium offers a significant reduction in temperature gradient as compared of other HTFs for all the aperture sizes of the collector. It is found that the temperature gradient around the circumference of the absorber tube wall at a length of 2 m is reduced to 4, 8, 10, 13, and 18 K, respectively, for the above‐mentioned mass flow rate with liquid sodium as HTF. The analyses are also performed for different HTF inlet temperature in order to study the behavior of the receiver. Based on the HTA, it is desired to have larger aperture parabolic trough collector to generate higher temperature from the solar field and reduce the capital cost. To achieve higher temperature and better performance of the receiver, HTF with good thermophysical properties may be preferable to minimize the heat losses and thermal gradient around the circumference of the absorber tube. 相似文献
19.
Parametric analysis and yearly performance of a trigeneration system driven by solar‐dish collectors
Evangelos Bellos Sasa Pavlovic Velimir Stefanovic Christos Tzivanidis Branka B. Nakomcic‐Smaradgakis 《国际能源研究杂志》2019,43(4):1534-1546
Solar‐driven polygeneration systems are promising technologies for covering many energy demands with a renewable and sustainable way. The objective of the present work is the investigation of a trigeneration system, which is driven by solar‐dish collectors. The examined trigeneration system includes an organic Rankine cycle (ORC), which operates with toluene, and an absorption heat pump, which operates with LiBr/H2O. The absorption heat pump is fed with heat by the condenser of the ORC, which operates at medium temperature levels (120°C to 150°C). The absorption heat pump produces both useful heat at 55°C and cooling at 12°C. The ORC produces electricity, and it is fed by the solar dishes. The examined ORC is a regenerative cycle with superheating. The total analysis is performed with a developed model in Engineering Equation Solver (EES). The system is investigated parametrically for different ORC heat‐rejection temperatures, different superheating levels in the turbine inlet, and various solar‐beam irradiation levels. Furthermore, the system is investigated on a yearly basis for the climate conditions of Athens (Greece) and for Belgrade (Serbia). It is found that the yearly system energy and exergy efficiencies are 108.39% and 20.92%, respectively, for Athens, while 111.38% and 21.50%, respectively, for Belgrade. The values over 100% for the energy efficiency are explained by the existence of a heat pump in the examined configuration. For both locations, the payback period is found close to 10 years and the internal rate of return close to 10%. The final results indicate that the examined configuration is a highly efficient and viable system, which operates only with a renewable energy source. 相似文献
20.
The performance of compound parabolic concentrator assisted tubular solar still (CPC-TSS) and compound parabolic concentrator-concentric tubular solar still (CPC-CTSS) (to allow cooling water) with different augmentation systems were studied. A rectangular saline water trough of dimension 2 m × 0.03 m × 0.025 m was designed and fabricated. The effective collector area of the still is 2 m × 1 m with five sets of tubular still – CPC collectors placed horizontally with north-south orientation. Hot water taken from the CPC-CTSS was integrated to a pyramid type and single slope solar still. Diurnal variations of water temperature, air temperature, cover temperature and distillate yield were recorded. The results showed that, the productivity of the un-augmented CPC-TSS and CPC-CTSS were 3710 ml/day and 4960 ml/day, respectively. With the heat extraction technique, the productivity of CPC-CTSS with a single slope solar still and CPC-CTSS with a pyramid solar still were found as 6460 ml/day and 7770 ml/day, respectively. The process integration with different systems cost was found slightly higher but the overall efficiency and the produced distilled water yield was found augmented. 相似文献