首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
四坐标联动斜齿轮测量仪可以测量渐开线圆柱齿轮的各项偏差。根据国家标准GB/T10095.1-2001《渐开线圆柱齿轮精度》和GB/T 13924-2008《渐开线圆柱齿轮精度检验细则》中渐开线圆柱齿轮各项偏差的定义和测量规范,以四坐标联动斜齿轮测量仪为研究对象,基于齿轮偏差坐标法的测量原理,给出渐开线圆柱齿轮的齿廓偏差、齿距偏差和螺旋线偏差测量时测头的运动路径和关键点的位置坐标,并通过一实例加以说明,该运动路径规划可用于齿轮偏差测量仪器的运动控制。  相似文献   

2.
提出了一种评定渐开线圆柱齿轮齿廓偏差的新方法。在已有研究的基础上,用假象的理论渐开线代替拟合渐开线,建立了渐开线圆柱齿轮齿廓偏差的数学模型。基于该数学模型,推导出了评定齿廓偏差的通用公式。用复合式三坐标测量机中的齿轮测量模块PC-Gear对某齿轮进行测量实验,并输出实验报告和被测齿轮的齿廓数据。结合通用公式和测量数据,利用MATLAB编程计算齿廓偏差,将计算结果与实验结果对比,用该评定方法得到的齿廓偏差值与实际测量值相差不超过0.2。结果表明:该评定方法正确、可行,为渐开线圆柱齿轮齿廓偏差的评定提供了一种参考。  相似文献   

3.
《机械传动》2016,(7):176-179
大齿轮几何中心的确定是大齿轮测量中的重要问题。在建立渐开线齿轮离散数据模型的基础上,提出一种确定大直齿圆柱齿轮几何中心的方法,建立了相应的数学模型;根据所求出的齿轮中心,计算齿廓偏差,并与齿轮几何中心理论坐标值下计算得到的齿廓偏差进行了比较。仿真结果表明,对于加入幅值为0~318μm随机噪声后的大齿轮,计算得到的齿轮几何中心最大误差不大于1μm,齿廓偏差与理论值之间的差值不大于10μm,说明该方法可有效应用于大直齿圆柱齿轮的测量。  相似文献   

4.
电火花线切割加工模具或齿轮渐开线齿廓之前,需先作曲线拟合,以便计算线切割编程数据.文章给出高精度的渐开线齿廓线曲线二点拟合法以及电火花线切割加工模具齿形和内齿精度简易检测方法.该方法对各种模具和圆柱齿轮的渐开线齿形加工均适用.  相似文献   

5.
ISO 1328:1975<平行轴渐开线圆柱齿轮ISO精度制>早已作废并被ISO 1328-1:1995<圆柱齿轮ISO精度制第1部分:轮齿同侧齿面偏差的定义和允许值>和ISO 1328-2:1977<圆柱齿轮ISO精度制第2部分:径向偏差和不圆度误差的定义和允许值>所替代.然而时至今日,我国圆柱齿轮精度仍停留在等效采用ISO 1328:1975的GB/T 10095-1988<渐开线圆柱齿轮精度>的水平上.日本、英国、韩国等国家都以等同采用ISO 1328-1:1995和ISO 1328-2:1997方式修订了各自国家标准(JIS,BS,KSB).  相似文献   

6.
针对工业对中小模数直齿圆柱齿距快速测量需求及视觉测量特点,提出一种基于齿廓图像边缘过渡带信息统计的单个齿距算法。该算法首先采用双阈值法提取齿轮齿廓边缘过渡带像素信息,然后根据齿轮渐开线几何关系,将过渡带像素信息逆向映射到基圆上,计算得到最优的齿廓边缘渐开线初始相位角,最后利用两条相邻同名齿廓初始相位角计算得出齿距。通过采用高精度量块组合边缘测量试验,验证了该算法的原理正确性和测量精度。结果表明,利用该算法视觉测量得到的相对位置最大偏差为0.002 1 mm,最大分散度为0.000 52 mm。对同一5级精度齿轮进行齿距测量,视觉齿轮测量仪和MM3525齿轮测量中心测量的最大单个齿距偏差出现在相同齿距上,二者相差0.000 7 mm,其齿距累积总偏差相差0.001 mm,表明本齿轮齿距视觉测量方法可以满足5级精度直齿圆柱齿轮齿距的快速测量要求。  相似文献   

7.
虑及计值范围的 1 级齿轮渐开线样板精密成型   总被引:1,自引:0,他引:1       下载免费PDF全文
齿轮渐开线样板是渐开线齿轮齿廓偏差溯源与量值传递的基准,是校准各种渐开线测量仪器的标准计量器具,但是目 前国内外没有满足我国齿轮渐开线样板国家标准 GB/ T 6467-2010 要求的 1 级齿轮渐开线样板。 1 级齿轮渐开线样板对计值 范围和齿廓形状偏差要求极为严格,齿根部非计值范围内的齿面弧长仅 0. 1 mm 左右,极易受加工误差影响,导致齿根部加工 根切或加工不完整,使齿轮渐开线样板的齿根部齿廓形状偏差超差。 本文建立了起始展开角误差与齿轮渐开线样板齿根部齿 廓偏差映射关系的数学模型,分析了齿根部齿廓形状偏差超差的原因,通过 Siemens NX 运动仿真和 CAD 仿真对模型进行了验 证,并提出一种渐次加工的齿轮渐开线样板齿根部工艺,利用该工艺对一件具有 3 种基圆参数的新型齿轮渐开线样板进行了磨 削实验,4 个齿面均满足在计值范围内齿廓形状偏差 f fα <1 μm,满足我国齿轮渐开线样板国家标准 GB/ T 6467-2010 对 1 级齿 轮渐开线样板计值范围和齿廓形状偏差的要求,研究成果为 1 级齿轮渐开线样板的精密制造提供了工艺方法的支持。  相似文献   

8.
双滚轮-导轨式渐开线测量仪一种无阿贝误差、误差源少、测量精度高的渐开线测量仪器,常用来测量 1 级齿轮渐开线 样板或 1 级标准齿轮,但是双滚轮-导轨式渐开线测量仪不易准确获得渐开线的齿廓偏差与展开长度的对应关系。 而渐开线齿 面的齿根部容易累积较多的加工误差和测量误差,1 级齿轮渐开线样板要求齿廓偏差需要从展开长度 3 或 5 mm 处开始计值, 如果展开长度存在偏差将会影响齿廓偏差的测量结果。 为了获得齿廓偏差与展开长度较为准确的对应关系、实现齿轮渐开线 样板的精确计值,本文研究了双滚轮-导轨式渐开线测量仪测量齿轮渐开线样板时齿轮渐开线样板齿顶圆角、齿顶圆偏差和滚 轮半径偏差对展开长度的影响,提出一种基于机器视觉的双滚轮-导轨式渐开线测量仪测量策略和展开长度修正方法,通过机 器视觉判断渐开线样板理论齿顶点和起始测量位置,并根据滚轮半径对展开长度进行修正。 本文对一件齿轮渐开线样板进行 了测量实验,齿廓形状偏差的测量结果与齿轮测量中心的差异不大于 0. 1 μm,且齿廓偏差曲线具有一致性,说明该测量策略可 以获得齿廓偏差与展开长度的对应关系。  相似文献   

9.
3903型CNC齿轮测量中心   总被引:1,自引:0,他引:1  
3903型CNC齿轮测量中心是一种综合性的齿轮测量仪器。该仪器可以测量直齿渐开线圆柱齿轮、斜齿渐开线圆柱齿轮、内齿轮、剃齿刀、插齿刀的齿廓偏差、螺旋线偏差、齿距累积偏差、齿距偏差、径向跳动等以及滚刀的齿形误差(其中包括刃口齿形、齿背齿形)、滚刀三转内(一转内)切削刃的螺旋线  相似文献   

10.
提出一种基于机器视觉的齿廓偏差检测新方法。在求得齿廓过某采样点的法线与基圆的切点后,得到该切点与对应的理论渐开线各离散点组成的各矢量倾角,采用"比较"与"异或"运算,得到过该采样点的齿廓的法线与理论渐开线的交点;然后,在齿轮齿廓渐开线的法线方向上测量齿廓偏差,以确保该方案所得到的齿廓偏差与其定义相一致。经实验得到所测某齿轮的齿廓偏差为6. 944 3μm。实验表明,所提出的基于机器视觉的齿廓偏差的检测方法,能够满足工程精度的需要。  相似文献   

11.
孙光宇  李平 《工具技术》2009,43(9):97-99
通过对现阶段齿轮量仪国外标准的分析,确定了齿轮测量中心标准所要求涵盖的具体内容,提出了评价仪器的技术指标,包括齿廓倾斜偏差的测量不确定度。针对影响齿廓倾斜偏差测量的各个因素,运用标准不确定度的评定方法,计算出这些因素的标准不确定度,最终确定不确定度参数。  相似文献   

12.
根据螺旋锥齿轮的切齿加工方法和齿轮啮合原理,运用矢量运算的方法建立了大轮成形法加工和小轮刀倾法加工的理论齿面方程并规划了齿面计算网格点区域.运用Visual Studi0 2008编程环境,编写了理论齿面各离散点空间坐标及法矢的计算软件,通过该软件可计算得到螺旋锥齿轮理论齿面各离散点在齿轮坐标系中的坐标值和单位法矢.将得到的理论齿面坐标点及法矢导入到三坐标测量机中进行测量获得各离散点的齿形误差,然后将获得该理论齿面坐标点及法矢的参数输入到CNC3906齿轮测量中心进行齿形误差测量,获得齿面上各离散点的齿形误差.将两组齿形误差测量数据进行对比分析,论证了所开发的计算软件的正确性,为螺旋锥齿轮齿面偏差的测量以及螺旋锥齿轮数字化闭环制造提供了正确的理论齿面数据.  相似文献   

13.
分析了双盘式渐开线测量仪中测点位置偏差对渐开线齿形测量的影响,探讨了高精度调整测点位置的两种方法:试验调整法与误差补偿调整法。试验调整法是根据测点偏离导轨平面测量渐开线齿形时,测量结果中齿形角小于实际值的原理,调整测头处于不同位置并测量渐开线齿形,齿形角最大的测量曲线对应的测点位置即为最佳位置。误差补偿调整法是在测点处于高于导轨平面的两个位置时,分别测量同一渐开线齿形,通过对测点偏移量逐次试值,补偿两次测量结果,使得测量结果中齿形偏差相同,获得测头偏移量。分析得出,上述两种方法调整测头位置的极限偏差分别为±0.010 mm和±0.015 mm,均可满足1级(GB/T10 095.1-2 001)渐开线齿形的测量要求。  相似文献   

14.
锥齿轮齿距及齿形偏差测量与分析方法   总被引:2,自引:0,他引:2  
研究了基于齿轮测量中心的锥齿轮齿距偏差和齿形偏差测量与分析方法及其实现技术。该方法应用齿轮啮合理论,根据锥齿轮齿面成形方法,建立了齿面几何参数计算模型;在齿面上建立测量网格,控制齿轮测量中心四轴运动使齿面和测头于测量网格点接触,采集实际坐标轴及测头读数;应用B样条法构造实际齿面,计算其齿形偏差。在此基础上,开发了基于哈量集团公司制造的390X系列齿轮测量中心的实现软件系统。30家锥齿轮制造企业实际应用表明,该软件系统为提高锥齿轮精度、减小齿形偏差提供了先进的测量与分析手段。  相似文献   

15.
新型圆弧齿轮泵有效地解决了传统齿轮泵存在的困油和流量脉动问题,然而,齿轮泵加工过程与装配安装相关的中心距误差对圆弧齿轮泵出口流量脉动特性有重要影响。推导了圆弧齿轮齿廓方程,并建立了圆弧齿轮泵内部齿腔压力模型,齿腔容积模型及流量脉动模型。在不同中心距误差下,分别在轻负荷工况(600 r/min,2 MPa)和中等负荷工况下(1480 r/min,8 MPa)进行流量脉动仿真。结果表明:当中心距误差在0.01 mm以内时,圆弧齿轮泵的出口流量逐渐增大,具有良好的动态特性;随着中心距误差增大到0.02 mm,圆弧齿轮泵的出口流量大幅度减小,该泵的动态特性变差。因此,需将中心距误差控制在一定范围内。中心距误差为0 mm及0.01 mm时,主从动齿轮的齿腔容积未发生较大变化;当中心距误差为0.02 mm 时,主、从动齿轮齿腔提前进入啮合,预示啮合位置发生变化。  相似文献   

16.
介绍了一种应用于齿轮测量中心上复杂齿廓测量的新方法——啮合线齿廓测量法。该方法减小了测头在X轴方向上运动距离,有效地保证了精度范围,同时减小测头重力中心的运动及测量时间,实现了高精度测量。该方法能够有效防止齿廓基圆测量法在进行内齿轮测量时的干涉现象,同时实现小直径内齿轮(外圆直径小于10mm)的一次装卡完成齿形、齿向和齿距误差测量。  相似文献   

17.
表征渐开螺旋齿轮的特征线有多种,广为熟知的是几何意义明确的渐开线和螺旋线。其实齿面上还有法向啮合齿形、接触线等工程价值突出的其他特征线。但特征线增多带来了两个问题,一是复杂的特征线方程彼此不关联,数学上缺乏统一性;二是除了渐开线和螺旋线,其他特征线没有测量手段,缺乏可测性。据渐开线齿轮传动的特点,将齿面特征线映射到啮合平面里,发现齿面上各条特征线在啮合平面里都有各自对应的二维直线,以此建立直线模型统一表达了齿面各种特征线;基于齿轮三维误差测量数据和特征线统一模型,提出了各种特征线偏差的提取方法,应用于测量实践,通过与通用齿轮仪器测量的渐开线偏差和螺旋线偏差作比对,证明了特征线统一模型及特征线偏差提取方法的有效性和实用性,解决了齿面复杂特征线的可测性问题。同时,齿轮特征线统一模型在齿轮工艺误差溯源、传动性能预报等方面也有重要应用价值。  相似文献   

18.
阐述了应用三坐标测量机,对渐开线圆柱齿轮齿廓进行数字化扫描和数字图像分析的方法,并通过MATLAB语言编写程序计算了齿廓的总偏差。  相似文献   

19.
传动平稳性、承载均匀性及合理的啮合侧隙是摆线针轮减速器的重要性能指标。根据摆线齿轮结构特点 ,第II公差组内规定了一齿切向综合公差fi′、一齿径向综合公差fi″、齿距极限偏差±fpt、齿形公差ff 等精度项目 ;第III公差组内规定了齿向公差Fβ 及齿轮接触斑点。由于摆线针轮传动不能采用基中心距法获得啮合侧隙 ,故应规定齿厚极限偏差Es。除齿形误差ff 外 ,Fp、±fpt、Fβ 及齿厚E均可利用渐开线齿轮测量仪器及测试方法进行测量  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号