首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green functions corresponding to uniformly distributed extended displacement discontinuities on an annular crack element in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium are derived. Using the obtained Green functions, an extended displacement discontinuity method is presented to analyze a penny-shaped crack under axisymmetric loadings. Using the electric and magnetic polarization saturation model and the electric and magnetic breakdown model, the electric and magnetic yielding zones, the extended displacement discontinuities, the extended stress intensity factors and the J-integral are numerically calculated. The accuracy and efficiency of the proposed method are demonstrated by comparing the numerical results with those obtained from analytical solutions.  相似文献   

2.
G. E. Tupholme 《Acta Mechanica》2009,202(1-4):153-162
An antiplane shear strip crack moving uniformly in transversely isotopic magnetoelectroelastic media when subjected to representative non-constant crack-face loading conditions is studied. Readily calculable explicit closed-form representations are determined and discussed for the components of the stress, electric and magnetic fields created throughout the material. Representative numerical data are presented. Alternative boundary conditions for which corresponding analyses can be derived analogously are listed.  相似文献   

3.
Dynamic crack propagation of composites is investigated in this paper based on the recent advances and development of orthotropic enrichment functions within the framework of partition of unity and the extended finite element method (XFEM). The method allows for analysis of the whole crack propagation pattern on an unaltered finite element mesh, defined independent of the existence of any predefined crack or its propagation path. A relatively simple, though efficient formulation is implemented, which consists of using a dynamic crack initiation toughness, a crack orientation along the maximum circumferential stress, and a simple equation to presume the crack speed. Dynamic stress intensity factors (DSIFs) are evaluated by means of the domain separation integral method. The governing elastodynamics equation is first transformed into a standard weak formulation and is then discretized into an XFEM system of time dependent equations, to be solved by the unconditionally stable Newmark time integration scheme. A number of benchmark and test problems are simulated and the results are compared with available reference results.  相似文献   

4.
5.
Recent developments in numerical techniques for dynamic transient stress analysis have ensured that realistic models can now be employed in crack propagation studies. In this paper transient dynamic finite element solutions are undertaken for both double cantilever beam (DCB) and pipeline problems with propagation of the crack being permitted. Standard parabolic isoparametric elements are employed for spatial discretization with an explicit (central difference) scheme being employed for time integration. Both critical stress and energy balance crack propagation criteria are considered.The pressurised pipeline problem is solved for as a fully three-dimensional solid. Firstly, a stationary crack is considered and both large deformations and plasticity effects are accounted for. The transient case of a dynamically propagating crack is then modelled, employing both a stress and energy criterion. Elastic large deformation behaviour is permitted for this case.
Résumé Des développements récents dans les techniques numériques pour l'analyse des contraintes dynamiques transitoires ont permis d'utiliser à présent des modèles réalistes dans les études de propagation des fissures. Dans ce mémoire, on envisage des solutions par éléments finis pour les transitoires dynamiques dans les cas de la poutre double cantilever et de problèmes de pipelines où l'on autorise la propagation d'une fissure. On recourt aux éléments paramétriques paraboliques standards pour réaliser une division discrète de l'espace, et l'on utilise pour l'intégration dans le temps un schéma explicite à différence centrale. On considére à la fois les critères de contraintes critiques et d'équilibre d'énergie lors de la propagation de la fissure. Le problème du pipeline pressurisé est solutionné en considérant ce dernier comme un solide tridimensionnel. En premier lieu, on considère une fissure stationnaire et l'on tient compte des effets des grandes déformations et de la plasticité. On met ensuite en équation le cas transitoire d'une fissure en propagation dynamique, en utilisant un critère de contrainte et un critère d'énergie. Ce cas permit d'envisager le comportement sous des déformations élastiques importantes.
  相似文献   

6.
In this paper, the dynamic interactions among cracks embedded in a two-dimensional (2-D) piezoelectric-piezomagnetic composite material are analyzed by means of a hypersingular formulation of the boundary element method. In the numerical solution procedure, extended crack opening displacements and extended traction jumps across the crack are considered as basic unknowns, so that only the traction boundary integral equations are needed on the crack surfaces. Quadratic discontinuous boundary elements are implemented together with discontinuous quarter-point elements placed next to the crack tips to ensure a proper representation of the square root asymptotic behavior. Several impermeable cracks configurations subjected to time-harmonic incident L-waves are analyzed in order to characterize the effects of the magnetoelectromechanical coupling on the dynamic crack interactions and to illustrate the dependence on such coupling of the fracture parameters: stress intensity factors, electric displacement intensity factor and magnetic induction intensity factor.  相似文献   

7.
In this paper we investigate the magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectroelastic material. The crack is assumed to be magnetically dielectric. A closed-form solution is derived by virtue of Hankel transform technique with the introduction of certain auxiliary functions. Field intensity factors are obtained and analyzed. The results indicate that the stress intensity factor depends only on the mechanical loads. However, all the other field intensity factors depend directly on both the magnetic and dielectric permeabilities inside the crack as well as on the applied magnetoelectromechanical loads and the material properties of the magnetoelectroelastic material. Several special cases are further discussed, with the reduced results being in agreement with those from literature. Finally, according to the maximum crack opening displacement (COD) criterion, the effects of the magnetoelectromechanical loads and the crack surface conditions on the crack propagation and growth are evaluated.  相似文献   

8.
The numerical manifold method is a cover-based method using mathematical covers that are independent of the physical domain. As the unknowns are defined on individual physical covers, the numerical manifold method is very suitable for modeling discontinuities. This paper focuses on modeling complex crack propagation problems containing multiple or branched cracks. The displacement discontinuity across crack surface is modeled by independent cover functions over different physical covers, while additional functions, extracted from the asymptotic near tip field, are incorporated into cover functions of singular physical covers to reflect the stress singularity around the crack tips. In evaluating the element matrices, Gaussian quadrature is used over the sub-triangles of the element, replacing the simplex integration over the whole element. First, the method is validated by evaluating the fracture parameters in two examples involving stationary cracks. The results show good agreement with the reference solutions available. Next, three crack propagation problems involving multiple and branched cracks are simulated. It is found that when the crack growth increment is taken to be 0.5hda≤0.75h, the crack growth paths converge consistently and are satisfactory.  相似文献   

9.
Two-dimensional crack problems in a three-layered material are analyzed numerically under the conditions of plane strain. An image method is adopted to obtain fundamental solutions for dislocation dipoles in trilayered media. The governing equations for equilibrium cracks can be constructed by distributed dislocation technique and their solutions are sought in terms of the displacement discontinuity method (DDM). Comparisons are made with available analytical or reference solutions for several examples at various contrasts of material constants, and good agreements are found. A crack within a brittle adhesive layer joining two semi-infinite blocks can propagate in a variety of ways. In particular, crack paths in the form of sigmoidal waves within the adhesive layer are revisited to reveal the sensitivities of cracking paths to initial crack locations and directions and residual stresses. In addition, Z-shape and H-shape cracks alternating from interface to interface are re-examined to highlight the transition of failure modes and the role of the interlayer thickness.  相似文献   

10.
The singular stress, electric fields and magnetic fields in a rectangular magnetoelectroelastic body containing a moving crack under longitudinal shear are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be permeable or impermeable, to dual integral equations, and then expressed in terms of Fredholm integral equations of the second kind. Results show that the stress intensity factors are influenced by the material constants, the geometry size ratio and the velocity of the crack, and the propagation of the crack possibly brings about branching phenomena.  相似文献   

11.
Fracture of rubber‐like materials is still an open problem. Indeed, it deals with modelling issues (crack growth law, bulk behaviour) and computational issues (robust crack growth in 2D and 3D, incompressibility). The present study focuses on the application of the eXtended Finite Element Method (X‐FEM) to large strain fracture mechanics for plane stress problems. Two important issues are investigated: the choice of the formulation used to solve the problem and the determination of suitable enrichment functions. It is demonstrated that the results obtained with the method are in good agreement with previously published works. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The finite element method using a singular element near the crack tip is extended to the elastodynamic problems of cracks where the displacement function of the singular element is taken from the solution of a propagating crack. The dynamic stress intensity factor for cracks of mode III or mode I deformations in a finite plate is determined.The results of computation for stationary cracks or propagating cracks under dynamic loadings are compared with the analytical solutions of other authors. It is shown that the present method satisfactorily describes the time variation of the stress intensity factor in dynamic crack problems.
Résumé La méthode des éléments finis utilisant un élément singulier au voisinage de l'extrémité d'une fissure a été étendue aux problèmes élastodynamiques des fissures tels qu'ils se posent lorsque la fonction de déplacement d'un élément singulier est prise à partir de la solution d'une fissure en cours de propagation. Le facteur d'intensité des contraintes dynamiques correspondant à des fissures de mode III ou des déformations de mode I dans une plaque finie a été déterminé. Les résultats des calculs correspondant à des fissures stationnaires ou des fissures en cours de propagation sous des charges dynamiques sont comparées aux solutions analytiques obtenues par d'autres auteurs. On montre que la méthode présentée décrit de façon satisfaisante la variation en fonction du temps du facteur d'intensité des contraintes dans les problèmes de fissuration dynamique.
  相似文献   

13.
This paper presents a rigorous elastodynamic hybrid-displacement finite element procedure for a safety analysis of fast rotating disks with mixed-mode cracks. Based on a modified Hamilton's principle, the finite element model is derived such that the proper crack-tip singularities are taken into consideration and the interelement displacement compatibility conditions are still satisfied. Thus, the specimen can be represented by a finite element assemblage in which “singular” elements are used around the crack-tip and high-order isoparametric “regular” elements are taken elsewhere.To determine the mixed-mode stress intensity factors, the modified J?k integrals for rotating cracked disks have been established taking into account the effect of centrifugal force. Using the “strain-energy-density factor” concept, the direction of crack growth of a rotating disk with an arbitrary internal crack is predicted. To provide a method of non-destructive testing in evaluating the integrity of structures, natural vibrations of cracked disk are then studied. Lastly, the influence of inertia effects due to rotating speed changes in determining the dynamic stress intensity factors is examined.For verification purposes, the simple case of a rotating disk with radial cracks is first solved. Excellent correlations between the computed results and available referenced solutions are drawn. New solutions for the circular disk with circumferential or arbitrarily-oriented cracks are also presented.  相似文献   

14.
Parallel crack near the interface of magnetoelectroelastic bimaterials   总被引:5,自引:0,他引:5  
A parallel crack near the interface of magnetoelectroelastic bimaterials is considered. The crack is modelled by using the continuously distributed edge dislocations, which are described by the density functions defined on the crack line. With the aid of the fundamental solution for the edge dislocation, the present problem is reduced to a system of singular integral equations, which can be numerically solved by using the Chebyshev numerical integration technique. Then, the stress intensity factor (SIF), the magnetic induction intensity factor (MIIF) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Using these fracture criteria, the cracking behaviour of magnetoelectroelastic bimaterials is investigated. Numerical examples demonstrate that the interface, mechanical load, magnetic load and material mismatch condition are all important factors affecting the fracture toughness of the magnetoelectroelastic bimaterials.  相似文献   

15.
The recently developed edge-based smoothed finite element method (ES-FEM) is extended to fracture problems in anisotropic media using a specially designed five-node singular crack-tip (T5) element. In the formulation of singular ES-FEM, only the assumed displacement values (not the derivatives) on the boundaries of the smoothing domains are needed. Thus, a layer of T5 crack-tip element is devised to construct “singular” shape functions via a simple point interpolation with a fractional order basis, without mapping procedure. The effectiveness of the present singular ES-FEM is demonstrated by intensive examples for a wide range of degrees of anisotropy.  相似文献   

16.
This paper presents fractal finite element based continuum shape sensitivity analysis for a multiple crack system in a homogeneous, isotropic, and two dimensional linear-elastic body subjected to mixed-mode (modes I and II) loading conditions. The salient feature of this method is that the stress intensity factors and their derivatives for the multiple crack system can be obtained efficiently since it only requires an evaluation of the same set of fractal finite element matrix equations with a different fictitious load. Three numerical examples are presented to calculate the first-order derivative of the stress intensity factors or energy release rates.  相似文献   

17.
A numerical model is presented to study the mechanisms of microcrack propagation in concrete, the load-displacement response and the trajectories of the crack propagation in specimens under displacement control. The microstructure of concrete in this model is represented by a matrix, inclusions and pre-existing microcracks introduced around the inclusions. Both the matrix and the inclusions are assumed to be elastic, homogeneous brittle materials. The stiffness of the inclusions is considered to be three times higher than that of the matrix. Crack propagation in the numerically-generated concrete is controlled by fracture mechanics-based criteria and is calculated through the finite element method. The influence of the microstructure of concrete, the size and the distribution of grains, the properties of the interfacial zone between grains and the matrix, as well as the boundary conditions, on final crack patterns and load-displacement responses are investigated. The different appearance of the numerical load-displacement curves exhibiting the quasi-brittle behaviour observed in experiments is explained in terms of several points of view, especially the dynamic crack propagation.
Résumé On présente un modèle numérique que l’on applique à l’étude des mécanismes de la microfissuration du béton, de la réponse en termes de courbe effort-déplacement et des trajectoires de propagation des fissures dans des éprouvettes en déplacement imposé. La microstructure du béton est représenté par une matrice, des inclusions et des microfissures introduites dans la matrice autour des inclusions. Dans ce modèle, la matrice et les inclusions sont considérées comme étant homogènes, élastiques et fragiles. La rigidité des inclusions est trois fois plus grande que celle de la matrice. La propagation des microfissures dans ce modèle numérique du béton est effectuée selon les critères de la mécanique linéaire élastique de la rupture par la méthode des éléments finis. On étudie l’influence de la microstructure du béton, notamment des auréoles de transition, de la taille et la distribution des grains, ainsi que des conditions aux limites imposées aux éprouvettes sur le trajet des fissures et sur l’allure des courbes effort-déplacement. Les résultats obtenus mettent en évidence le comportement semi-fragile observé lors des essais. Ce comportement a été expliqué par différentes causes et notamment par la propagation dynamique des fissures.


Editorial note J. Wang, P. Navi and C. Huet work at the Laboratory of Building Materials (EPFL), Lausanne, Switzerland, which is a RILEM Titular Member Prof. Huet is a RILEM Senior Member and active on RILEM Technical Committees 107-GCS on Guideliness for the formulation of Creep and Shrinkage prediction models, 114-CCS on Computer programmes for Creep and Shrinkage analysis of concrete structures and 123-MME on Use of Microstructural Models and Expert systems for cementitious materials. Dr. Navi is also a member of Technical Committee 123-MME, as well as 133-TF on Fracture of Timber.  相似文献   

18.
The general solution of three-dimensional problems in transversely isotropic magnetoelectroelastic media is obtained through five newly introduced potential functions. The displacements, electric potential, magnetic potential, stresses, electric displacements and magnetic inductions can all be expressed concisely in terms of the five potential functions, all of which are harmonic. The derived general solution is then applied to find the fundamental solution for a generalized dislocation and also to derive Green's functions for a half-space magnetoelectroelastic solid.  相似文献   

19.
The extended displacement discontinuity method (EDDM) and the charge simulation method (CSM) are combined to develop an efficient approach for analysis of cracks in two-dimensional piezoelectric media. In the proposed hybrid EDD–CSM, the solution for an electrically impermeable crack is approximately expressed by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with the sources placed at chosen points outside the domain of the problem under consideration and the extended Crouch fundamental solutions with the extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the conditions on the boundary of the domain and on the crack face. Furthermore, the hybrid EDD–CSM is applied to solve the problems of cracks under electrically permeable condition, as well as under semi-permeable conditions by using an iterative approach. Two important crack problems in fracture mechanics, the center cracks and the edge cracks in piezoelectric strips, are analyzed by the proposed method. The stress intensity factor and the electric displacement intensity factor are calculated. Meanwhile the effects of strip size and the electric boundary conditions on these intensity factors are studied.  相似文献   

20.
A magnetoelectroelastic analysis for a penny-shaped crack embedded in an infinite piezoelectromagnetic material is made. Taking into account the fact that electric and magnetic fields can permeate through the opening crack, the electric and magnetic boundary conditions at the crack surfaces are assumed to be semi-permeable, or depend nonlinearly on the crack opening displacement. For the case of a circular crack normal to the poling direction, the associated mixed boundary value problem is reduced to solving dual integral equations by applying the Hankel transform technique. An entire magnetoelectroelastic field is obtained in simple and explicit form. Numerical results for a cracked BaTiO3-CoFe2O4 material reveal the dependence of the electric displacement and magnetic induction at the crack surfaces with applied mechanical loading. The influences of applied electric and magnetic loadings on normalized fracture parameters are illustrated graphically for a vacuum circular crack. The impermeable and permeable cracks can be treated as two limiting cases of the present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号