首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin-dependent but not clathrin-independent endocytosis, we have now traced the intracellular routing of these nonclathrin coated vesicles to see whether molecules internalized by clathrin-independent endocytosis are delivered to a unique compartment or whether they reach the same early and late endosomes as encountered by molecules internalized with high efficiency through clathrin-coated pits and vesicles. We find that Con A-gold internalized by clathrin-independent endocytosis is delivered to endosomes containing transferrin receptors. After incubation of K(+)-depleted cells with Con A-gold for 15 min, approximately 75% of Con A-gold in endosomes is colocalized with transferrin receptors. Endosomes containing only Con A-gold may be accounted for either by depletion of existing endosomes for transferrin receptors or by de novo generation of endosomes. Cationized gold and BSA-gold internalized in K(+)-depleted cells are also delivered to endosomes containing transferrin receptors. h-lamp-1-enriched compartments are only reached occasionally within 30 min in K(+)-depleted as well as in control cells. Thus, preendosomal vesicles generated by clathrin-independent endocytosis do not fuse to any marked degree with late endocytic compartments. These data show that in HEp-2 cells, molecules endocytosed without clathrin are delivered to the same endosomes as reached by transferrin receptors internalized through clathrin-coated pits.  相似文献   

2.
Opioid receptors are regulated within minutes after activation by G protein-coupled receptor kinase-mediated phosphorylation and dynamin-dependent endocytosis. We addressed the question of whether phosphorylation is required for opioid receptor endocytosis by examining a functional, truncated mutant delta opioid receptor (DOR344T), which is missing phosphorylation sites located in the carboxyl-terminal cytoplasmic domain. DOR344T receptors expressed in Chinese hamster ovary cells remained predominantly in the plasma membrane, even in the presence of saturating concentrations of agonist, consistent with previous studies demonstrating strongly inhibited endocytosis of truncated receptors in this cell type. In marked contrast, DOR344T receptors expressed at similar levels in human embryonal kidney (HEK) 293 cells exhibited rapid, ligand-induced internalization either in the presence of peptide (DADLE) or alkaloid (etorphine) agonist. Quantitative assays using ELISA and flow cytometric techniques indicated that DOR344T receptors were endocytosed in HEK293 cells with similarly rapid kinetics as full-length DOR (t1/2 < 10 min), and both full-length DOR and DOR344T mutant receptors were endocytosed by a dynamin-dependent mechanism involving clathrin-coated pits. Nevertheless, DOR344T receptors failed to undergo any detectable constitutive or agonist-induced phosphorylation in the same cells in which dynamin-dependent endocytosis was observed. These findings establish the first example of a G protein-coupled receptor that does not require phosphorylation to undergo dynamin-dependent endocytosis, and they suggest that significant cell type-specific differences exist in the biochemical requirements for ligand-induced concentration of opioid receptors in clathrin-coated pits.  相似文献   

3.
Diphtheria toxin is believed to enter sensitive mammalian cells via receptor-mediated endocytosis from clathrin-coated pits, while ricin can enter via both clathrin-dependent and clathrin-independent endocytosis. The present study has confirmed this by determining the toxin sensitivity of COS-7y cells which were transiently overexpressing a trans dominant negative mutant of dynamin, a GTPase required for the budding of clathrin-coated vesicles from the plasma membrane. Cells overexpressing wild-type dynamin showed normal receptor-mediated endocytosis of transferrin and remained sensitive to both diphtheria toxin and ricin. Cells overexpressing a mutant dynamin defective in GTP binding and hydrolysis were unable to endocytose transferrin and were protected against diphtheria toxin, but they remained completely sensitive to ricin intoxication. Treating non-transfected cells or cells overexpressing mutant dynamin with nystatin caused a redistribution of the caveolae membrane marker protein VIP21-caveolin from the cell surface to intracellular locations, but did not affect their sensitivity to ricin. The redistribution of caveolin seen after nystatin treatment may reflect the disappearance of caveolae. If this is the case, caveolae are not responsible for the endocytosis of ricin. An alternative clathrin-independent route may operate for ricin, since cellular uptake, intracellular transport, and translocation into the cytosol remain unaffected when clathrin-dependent endocytosis is effectively blocked.  相似文献   

4.
Cell surface receptors that mediate endocytosis cluster into clathrin-coated pits, which pinch off to form vesicles that transport the receptors and their ligands. This multi-step process requires the coordinated action of many factors, including GTP-hydrolyzing proteins such as dynamin and regulators of actin cytoskeleton assembly. We note herein that sequestration of heterotrimeric G protein beta gamma subunits in intact cells strongly inhibits clathrin-coated pit-mediated endocytosis and causes rearrangement of the actin cytoskeleton. Our results suggest that cells contain a pool of free beta gamma and that it functions constitutively to permit endocytosis.  相似文献   

5.
Apical endocytosis in the absorptive cells of the suckling rat jejunum was examined in vivo using the intraluminal injection of a range of different lectin-horseradish peroxidase (HRP) conjugates. Con A-HRP, PNA-HRP, LCA-HRP and RCA120-HRP bound strongly to components of the glycocalyx on the plasma membrane of the microvilli, apical coated pits and the small tubular pits at the base of the microvilli of the absorptive cells. The lectin-conjugates on the plasma membranes were endocytosed from the coated pits and small tubular pits, and then transported into coated vesicles, vesicles and small tubules. Lectin-HRP conjugates were later found within the intercellular space. In contrast, SBA-HRP and DBA-HRP bound weakly to the plasma membranes. The absorptive cells demonstrated little uptake or transepithelial transport. When WGA-HRP was injected into the intestinal lumen in vivo, the jejunum absorptive cells formed a deep and wide apical invagination at the base of the microvilli. WGA-HRP bound strongly to the components of the glycocalyx on the plasma membranes of the microvilli, the deep and wide apical invaginations, the apical coated pits and the small tubular pits. The WGA-HRP conjugate was also found in the coated vesicles, tubules, early endosomes, late endosomes, multivesicular bodies and lysosomes, and within the intercellular space. The lectin-HRP conjugate on the plasma membranes however was almost entirely transported into the early endosomes, late endosomes, multivesicular bodies and lysosomes. Therefore, lectin-HRP conjugates may bind to the glycocalyx component on the apical membrane domains, thus resulting in different membrane formations of apical endocytosis by adsorption to the apical plasma membrane specific glycoconjugates in the absorptive cells of the suckling rat jejunum. In addition, WGA induces deep and wide invaginations in the dynamic (not static) membrane domain of the apical plasma membrane in the suckling rat jejunum in vivo.  相似文献   

6.
Eps15, a phosphorylation substrate of the epidermal growth factor (EGF) receptor kinase, has been shown to bind to the alpha-subunit of the clathrin-associated protein complex AP-2. Here we report that in cells, virtually all Eps15 interacts with the cytosol and membrane-bound forms of AP-2. This association is not affected by the treatment of cells with EGF. Immunofluorescence microscopy reveals nearly absolute co-localization of Eps15 with AP-2 and clathrin, and analysis by immunoelectron microscopy shows that the localization of membrane-associated Eps15 is restricted to the profiles corresponding to endocytic coated pits and vesicles. Unexpectedly, Eps15 was found at the edge of forming coated pits and at the rim of budding coated vesicles. This asymmetric distribution is in sharp contrast to the localization of AP-2 that shows an even distribution along the same types of clathrin-coated structures. These findings suggest several possible regulatory roles of Eps15 during the formation of coated pits.  相似文献   

7.
Many alkaloid drugs used as analgesics activate multiple opioid receptors. Mechanisms that distinguish the actions of these drugs on the regulation of individual micro, delta, and kappa receptors are not understood. We have observed that individual cloned opioid receptors differ significantly in their regulation by rapid endocytosis in the presence of alkaloid drug etorphine, a potent agonist of mu, delta, and kappa opioid receptors. Internalization of epitope-tagged delta opioid receptors from the plasma membrane is detectable within 10 min in the presence of etorphine. In contrast, kappa receptors expressed in the same cells remain in the plasma membrane and are not internalized for >/=60 min, even when cells are exposed to saturating concentrations of etorphine. The rapid internalization of delta receptors is specifically inhibited in cells expressing K44E mutant dynamin I, suggesting that type-specific internalization of opioid receptors is mediated by clathrin-coated pits. Examination of a series of chimeric mutant kappa/delta receptors indicates that at least two receptor domains, including the highly divergent carboxyl-terminal cytoplasmic tail, determine the type specificity of this endocytic mechanism. We conclude that structurally homologous opioid receptors are differentially sorted by clathrin-mediated endocytosis following activation by the same agonist ligand. These studies identify a fundamental mechanism of receptor regulation mediating type-specific effects of analgesic drugs that activate more than one type of opioid receptor.  相似文献   

8.
We have tested whether action potential-evoked Ca2+ influx is required to initiate clathrin-mediated synaptic vesicle endocytosis in the lamprey reticulospinal synapse. Exo- and endocytosis were temporally separated by a procedure involving tonic action potential stimulation and subsequent removal of extracellular Ca2+ (Ca2+e). A low concentration of Ca2+ ([Ca2+]e of 11 microM) was found to be required for the induction of early stages of endocytosis. However, the entire endocytic process, from the formation of clathrin-coated membrane invaginations to the generation of synaptic vesicles, proceeded in the absence of action potential-mediated Ca2+ entry. Our results indicate that the membrane of synaptic vesicles newly incorporated in the plasma membrane is a sufficient trigger of clathrin-mediated synaptic vesicle endocytosis.  相似文献   

9.
The Nef protein of primate lentiviruses down-regulates the cell surface expression of CD4 and probably MHC I by connecting these receptors with the endocytic machinery. Here, we reveal that Nef interacts with the mu chains of adaptor complexes, key components of clathrin-coated pits. For human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus (SIV) Nef, this interaction occurs via tyrosine-based motifs reminiscent of endocytosis signals. Mutating these motifs prevents the binding of SIV Nef to the mu chain of plasma membrane adaptor complexes, abrogates its ability to induce CD4 internalization, suppresses the accelerated endocytosis of a chimeric integral membrane protein harboring Nef as its cytoplasmic domain and confers a dominant-negative phenotype to the viral protein. Taken together, these data identify mu adaptins as downstream mediators of the down-modulation of CD4, and possibly MHC I, by Nef.  相似文献   

10.
The ability of a system to regulate its responsiveness in the presence of a continuous stimulus, often termed desensitization, has been extensively characterized for the beta2-adrenergic receptor (beta2AR). beta2AR signalling is rapidly attenuated through receptor phosphorylation and subsequent binding of the protein beta-arrestin. Ultimately the receptor undergoes internalization, and although the molecular mechanism is unclear, receptor phosphorylation and beta-arrestin binding have been implicated in this processs. Here we report that beta-arrestin and arrestin-3, but not visual arrestin, promote beta2AR internalization and bind with high affinity directly and stoichiometrically to clathrin, the major structural protein of coated pits. Moreover, beta-arrestin/arrestin chimaeras that are defective in either beta2AR or clathrin binding show a reduced ability to promote beta2AR endocytosis. Immunofluorescence microscopy of intact cells indicates an agonist-dependent colocalization of the beta2AR and beta-arrestin with clathrin. These results show that beta-arrestin functions as an adaptor in the receptor-mediated endocytosis pathway, and suggest a general mechanism for regulating the trafficking of G-protein-coupled receptors.  相似文献   

11.
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.  相似文献   

12.
BACKGROUND: Receptor-mediated endocytosis appears to require the GTP-binding protein dynamin, but the process by which dynamin is recruited to clathrin-coated pits remains unclear. Dynamin contains several proline-rich clusters that bind to Src homology 3 (SH3) domains, which are short modules found in many signalling proteins and which mediate protein-protein interactions. Amphiphysin, a protein that is highly expressed in the brain, interacts with dynamin in vitro, as do Grb2 and many other SH3 domain-containing proteins. In this study, we examined the role of amphiphysin in receptor-mediated endocytosis in vivo. RESULTS: To address the importance of the amphiphysin SH3 domain in dynamin recruitment, we used a transferrin and epidermal growth factor (EGF) uptake assay in COS-7 fibroblasts. Amphiphysin is present in these cells at a low level and indeed in other peripheral tissues. Confocal immunofluorescence revealed that cells transfected with the amphiphysin SH3 domain showed a potent blockade in receptor-mediated endocytosis. To test whether the cellular target of amphiphysin is dynamin, COS-7 cells were contransfected with both dynamin and the amphiphysin SH3 domain; here, transferrin uptake was efficiently rescued. Importantly, the SH3 domains of Grb2, phospholipase C gamma and spectrin all failed to exert any effect on endocytosis. The mechanism of amphiphysin action in recruiting dynamin was additionally tested in vitro: amphiphysin could associate with both dynamin and alpha-adaptin simultaneously, further supporting a role for amphiphysin in endocytosis. CONCLUSIONS: Our results suggest that the SH3 domain of amphiphysin recruits dynamin to coated pits in vivo, probably via plasma membrane adaptor complexes. We propose that amphiphysin is not only required for synaptic-vesicle endocytosis, but might also be a key player in dynamin recruitment in all cells undergoing receptor-mediated endocytosis.  相似文献   

13.
Clathrin-mediated endocytosis was shown to be arrested in mitosis due to a block in the invagination of clathrin-coated pits. A Xenopus mitotic phosphoprotein, MP90, is very similar to an abundant mammalian nerve terminal protein, epsin, which binds the Eps15 homology (EH) domain of Eps15 and the alpha-adaptin subunit of the clathrin adaptor AP-2. We show here that both rat epsin and Eps15 are mitotic phosphoproteins and that their mitotic phosphorylation inhibits binding to the appendage domain of alpha-adaptin. Both epsin and Eps15, like other cytosolic components of the synaptic vesicle endocytic machinery, undergo constitutive phosphorylation and depolarization-dependent dephosphorylation in nerve terminals. Furthermore, their binding to AP-2 in brain extracts is enhanced by dephosphorylation. Epsin together with Eps15 was proposed to assist the clathrin coat in its dynamic rearrangements during the invagination/fission reactions. Their mitotic phosphorylation may be one of the mechanisms by which the invagination of clathrin-coated pits is blocked in mitosis and their stimulation-dependent dephosphorylation at synapses may contribute to the compensatory burst of endocytosis after a secretory stimulus.  相似文献   

14.
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin-Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0 degreesC, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5-10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.  相似文献   

15.
After fusion of synaptic vesicles with presynaptic membrane and secretion of the contents of the vesicles into the synaptic cleft (a process known as exocytosis), the vesicular membrane is retrieved by endocytosis (internalization) for re-use. Several issues regarding endocytosis at central synapses are unresolved, including the location of membrane retrieval (relative to the active zone, where exocytosis occurs), the time course of various endocytic steps, and the recycling path taken by newly endocytosed membranes. The classical model of synaptic-vesicle recycling, proposed by analogy to other cellular endocytic pathways, involves retrieval of the membrane, fusion of the membrane with endosome-like compartments and, finally, budding of new synaptic vesicles from endosomes, although the endosomal station may not be obligatory. Here we test the classical model by using the fluorescent membrane dye FM1-43 with quantitative fluorescence microscopy. We find that the amount of dye per vesicle taken up by endocytosis equals the amount of dye a vesicle releases on exocytosis; therefore, we conclude that the internalized vesicles do not, as the classical picture suggests, communicate with intermediate endosome-like compartments during the recycling process.  相似文献   

16.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

17.
Host recognition and disposal of LPS, an important Gram-negative bacterial signal molecule, may involve intracellular processes. We have therefore analyzed the initial pathways by which LPS, a natural ligand of glycosylphosphatidylinositol (GPI)-anchored CD14 (CD14-GPI), enters CD14-expressing THP-1 cells and normal human monocytes. Exposure of the cells to hypertonic medium obliterated coated pits and blocked 125I-labeled transferrin internalization, but failed to inhibit CD14-mediated internalization of [3H]LPS monomers or aggregates. Immunogold electron microscope analysis found that CD14-bound LPS moved principally into noncoated structures (mostly tubular invaginations, intracellular tubules, and vacuoles), whereas relatively little moved into coated pits and vesicles. When studied using two-color laser confocal microscopy, internalized Texas Red-LPS and BODIPY-transferrin were found in different locations and failed to overlap completely even after extended incubation. In contrast, in THP-1 cells that expressed CD14 fused to the transmembrane and cytosolic domains of the low-density lipoprotein receptor, a much larger fraction of the cell-associated LPS moved into coated pits and colocalized with intracellular transferrin. These results suggest that CD14 (GPI)-dependent internalization of LPS occurs predominantly via noncoated plasma membrane invaginations that direct LPS into vesicles that are distinct from transferrin-containing early endosomes. A smaller fraction of the LPS enters via coated pits. Aggregation, which greatly increases LPS internalization, accelerates its entry into the nonclathrin-mediated pathway.  相似文献   

18.
beta-Arrestins mediate agonist-dependent desensitization of G protein-coupled receptors and target the receptors to clathrin-coated pits for internalization. Here we report an expanded role of beta-arrestins in promoting clathrin-mediated endocytosis of a tyrosine kinase growth factor receptor, i.e. the insulin-like growth factor I (IGF-1) receptor. beta-Arrestins bind to the ligand-occupied IGF-1 receptors, promote their endocytosis, and enhance IGF-1-dependent mitogen-activated protein kinase phosphorylation and DNA synthesis. Our results suggest a role for beta-arrestins in regulating mitogenic signaling and clathrin-mediated endocytosis of receptors not classically coupled to G proteins.  相似文献   

19.
pp120, a substrate of the insulin receptor tyrosine kinase, is a plasma membrane glycoprotein that is expressed in the hepatocyte as two spliced isoforms differing by the presence (full-length) or absence (truncated) of most of the intracellular domain including all phosphorylation sites. Co-expression of full-length pp120, but not its phosphorylation-defective isoforms, increased receptor-mediated insulin endocytosis and degradation in NIH 3T3 fibroblasts. We, herein, examined whether internalization of pp120 is required to mediate its effect on insulin endocytosis. The amount of full-length pp120 expressed at the cell surface membrane, as measured by biotin labeling, markedly decreased in response to insulin only when insulin receptors were co-expressed. In contrast, when phosphorylation-defective pp120 mutants were co-expressed, the amount of pp120 expressed at the cell surface did not decrease in response to insulin. Indirect immunofluorescence analysis revealed that upon insulin treatment of cells co-expressing insulin receptors, full-length, but not truncated, pp120 co-localized with alpha-adaptin in the adaptor protein complex that anchors endocytosed proteins to clathrin-coated pits. This suggests that full-length pp120 is part of a complex of proteins required for receptor-mediated insulin endocytosis and that formation of this complex is regulated by insulin-induced pp120 phosphorylation by the receptor tyrosine kinase. In vitro GST binding assays and co-immunoprecipitation experiments in intact cells further revealed that pp120 did not bind directly to the insulin receptor and that its association with the receptor may be mediated by other cellular proteins.  相似文献   

20.
The low density lipoprotein receptor-related protein (LRP-1) is a multiligand receptor capable of mediating endocytosis of a wide array of ligands that relate to both lipoprotein metabolism and proteinase regulation. Many of its ligands are proteinases, proteinase-inhibitor complexes, and lipoproteins known to be contained within the luminal fluid of the seminiferous tubules or in the interstitial spaces of the testis. Immunocytochemical analysis was performed to characterize the pattern of expression of LRP-1 in cells of the rat testis. Immunoperoxidase staining localized LRP-1 to the cytoplasm of Sertoli cells. The distribution and intensity of the Sertoli cell staining was found to vary according to the stages of the cycle of the seminiferous epithelium. Staining was weak in the basal cytoplasm of Sertoli cells during stages II-VIII and strong and granular in the supranuclear cytoplasm during stages XII-XIV and stage I of the cycle. Immunogold labeling showed gold particles associated with the basal and adluminal plasma membranes, with endocytic vesicles, and with endosome membranes. Labeling was also observed on the plasma membrane and membranes of the endocytic apparatus in macrophages and Leydig cells in the interstitial space. Infusion of 125I-Labeled LRP-1 antibody into seminiferous tubules followed by radioautography showed silver grains overlaying the ad-luminal plasma membrane of Sertoli cells at time 0 and in endocytic vesicles and endosomes in the supranuclear region of Sertoli cells 10-minutes postinjection. When the 125I-Labeled LRP-1 antibody was injected into the interstitial space, silver grains overlayed the basal plasma membrane and coated endocytic pits of Sertoli cells at time 0 and, at 10 minutes, the grains labeled endosomes located in the basal pole of Sertoli cells. 125I-Labeled LRP-1 antibody also labeled the plasma membrane and the endocytic apparatus of macrophages and Leydig cells. The absence of immunogold labeling and radioautographic silver grains within lysosomes of Sertoli cells, Leydig cells, and macrophages suggests that internalized LRP-1 is recycled back to the cell surface. The presence of LRP-1 in the endocytic compartment of these cells is consistent with its functioning in the clearance of proteases involved in seminiferous tubule remodeling and/ or the uptake of cholesterol-bound lipoproteins necessary for the biosynthesis of testosterone. In conclusion, the results of these studies demonstrated for the first time the presence of LRP-1 receptor in the endocytic compartments of Sertoli cells and interstitial cells of the rat testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号