首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autogenous cancellous bone fragments can be compressed rapidly during surgery to create reproducible load-bearing grafts. Of the 32 grafts tested, 10 were constructed of composite cortical-cancellous bovine bone and 22 of cancellous human bone. Compressed composite bovine grafts and compressed human cancellous grafts supported average axial compressive loads of 2148 N and 960 N, respectively. Compared to iliac crest grafts, compression grafts may have better load-bearing capabilities and greater reproducibility. Potential applications include trauma, delayed unions, arthrodesis, and spinal fusions.  相似文献   

2.
1. The major metabolite after incubating aniline with sheep intestine was acetanilide. 2. Other metabolites detected in smaller amounts were 2-aminophenol, 4-aminophenol, 2-acetamidophenol and 4-acetamidophenol. 3. The rumen, abomasum duodenum, jejunum, ileum and colon were all able to acetylate aniline. 4. 4-Aminophenol, 4-aminobenzoic acid, 4-anisidine and 4-nitroaniline were also acetylated.  相似文献   

3.
4-14C-Progesterone and 4-14C-pregnenolone are metabolized in vitro by rabbit placenta, at day 15 and 28 of gestation, exclusively to compounds reduced in ring A (5beta) and at carbon 3 and 20.  相似文献   

4.
The genome of the broad host range Streptomyces temperate phage, phiC31, is known to integrate into the host chromosome via an enzyme that is a member of the resolvase/invertase family of site-specific recombinases. The recombination properties of this novel integrase on the phage and Streptomyces ambofaciens attachment sites, attP and attB, respectively, were investigated in the heterologous host, Escherichia coli, and in an in vitro assay by using purified integrase. The products of attP/B recombination, i.e., attL and attR, were identical to those obtained after integration of the prophage in S. ambofaciens. In the in vitro assay only buffer, purified integrase, and DNAs encoding attP and attB were required. Recombination occurred irrespective of whether the substrates were supercoiled or linear. A mutant integrase containing an S12F mutation was completely defective in recombination both in E. coli and in vitro. No recombination was observed between attB/attB, attP/attP, attL/R, or any combination of attB or attP with attL or attR, suggesting that excision of the prophage (attL/R recombination) requires an additional phage- or Streptomyces-encoded factor. Recombination could occur intramolecularly to cause deletion between appropriately orientated attP and attB sites. The results show that directionality in phiC31 integrase is strictly controlled by nonidentical recombination sites with no requirement to form the topologically defined structures that are more typical of the resolvases/invertases.  相似文献   

5.
14-C-nicotine was incubated with 10000 X g supernatant fraction of liver homogenate from female mice (C3H/TIF/BOM) 2, 12 and 18 months old. The rate of metabolism was measured by the determination of the oxidative nicotine metabolite continine and by determining the disappearance of nicotine. No significant changes between different ages were found either in the continine formation or the rate of disappearance of nicotine.  相似文献   

6.
The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.  相似文献   

7.
Differences have been found, which are usually 1% or less, between the left ventricular ejection time measured from the external carotid pulse tracing, and from the rate of change of thoracic impedance (dZ/dt) waveform, using either the second heart sound or the X-point of the dZ/dt tracing as the end-point. The Heather Index obtained from the ECG and dZ/dt tracings has been correlated with other indices of cardiac performance. The changes observed in the physiological variables during head-up and head-down tilting were in the expected directions.  相似文献   

8.
A case of common atrium with anomalous systemic and pulmonary venous connections and pulmonary stenosis is described. Surgical correction was performed by pulmonary valvotomy and the insertion of an intra-atrial pericardial baffle. To our knowledge this is the first reported case of surgical correction of total anomalous connections of both systemic and pulmonary veins. The embryologic development of this condition is discussed.  相似文献   

9.
In vitro metabolism of clenbuterol and bromobuterol by pig liver microsomes   总被引:1,自引:0,他引:1  
1. Clenbuterol (CBL) and bromobuterol (BBL) were both extensively metabolized by hepatic microsomes of swine to only one polar metabolite which was separated by hplc and purified to perform mass analysis. 2. LC-MIS analysis by direct infusion into an ion trap system and after reverse-phase chromatograpy into a triple quadrupole system showed that the metabolites were the hydroxylamine-derivatives of CBL and BBL. GC-MS analysis by the CI and EI modes confirmed that the hydroxyl group was bound to the aniline nitrogen. The chemical instability of those metabolites probably as a consequence of spontaneous oxidation and reduction gave rise during the analysis to the corresponding nitroso and nitro derivatives, together with the original compound. 3. Thermal inactivation and CO complex formation were used selectively to inactivate flavin monooxygenase and cytochrome P450, respectively. Both inactivation procedures significantly reduced the formation of the hydroxyl metabolite.  相似文献   

10.
Hydroxyapatite orbital implants undergo early ingrowth of fibrovascular tissue after enucleation. This animal study determined whether control and osteogenin-impregnated hydroxyapatite orbital implants vary in their osteogenic response at 6 and 52 weeks. Rabbits underwent enucleation with implantation of control or osteogenin-impregnated hydroxyapatite spheres. Light microscopy determined fibrovascular ingrowth, and histomorphometry quantitated the amount of bone produced. Osteogenin implants vascularized at a faster rate and contained bony foci by 6 weeks that became confluent at 1 year. Spontaneous osteogenesis was not seen in control animals at 6 weeks. After 1 year they contained bone, although less than in the osteogenin implants. Mixed cell inflammation was observed at the hydroxyapatite-tissue interface in both groups. No inflammation was noted at the interface of hydroxyapatite and bone. These are the first controlled observations that bone-specific differentiation occurs in the pores of spherical hydroxyapatite implants within the soft tissues of the socket. This vascularized process can be enhanced with osteogenin to occur earlier and more uniformly in the implants at one year.  相似文献   

11.
Cell-free extracts prepared from the extremely halophilic bacterium Halobacterium saccharovorum oxidize galactose and accumulate a product which reacts as if it were a lactone. The product does not act as a reducing sugar and contains all six of the carbon atoms initially present in galactose. The product was jugged to be galactonic acid, based on the behavior of the acetylmethyl ester derivative of the product and the pentaacetyl derivative of the galactonic methyl ester during gas chromatography.  相似文献   

12.
The effects of trapidil, a coronary vasodilator and platelet aggregation inhibitor, on fatty acid metabolism and prostaglandin (PG) formation in platelets were studied using platelet suspensions from six normal subjects. The addition of trapidil to fatty acids in platelet phospholipids decreased palmitoleic acid and arachidonic acid, and increased an unidentified substance, X2 (palmitoleic acid, P < 0.05; arachidonic acid, P < 0.05; X2, P < 0.05). Thrombin stimulation following the addition of trapidil resulted in an increase in stearic acid and a decrease in arachidonic acid, compared with the trapidil-free control samples (stearic acid, P < 0.05; arachidonic acid, P < 0.02). The addition of trapidil tended to increase immunoreactive PGE (iPGE) and iPGF dose-dependently. On the other hand, thrombin stimulation following the addition of trapidil decreased the formation of thromboxane B2 (TXB2) significantly compared with the levels of TXB2 in the trapidil-free samples (10 micrograms/mL trapidil, P < 0.005, 100 micrograms/mL trapidil, P < 0.001). These results show that trapidil increased arachidonic acid mobilization in the platelets.  相似文献   

13.
The in vitro metabolism of ropinirole was investigated with the aim of identifying the cytochrome P450 enzymes responsible for its biotransformation. The pathways of metabolism after incubation of ropinirole with human liver microsomes were N-despropylation and hydroxylation. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to each pathway. A high affinity component with a K(M) of 5-87 microM and a low affinity component with a K(M) of approximately two orders of magnitude greater were evident. The high affinity component could be abolished by pre-incubation of the microsomes with furafylline. Additionally, incubation of ropinirole with microsomes derived from CYP1A2 transfected cells readily produced the N-despropyl and hydroxy metabolites. Some inhibition of ropinirole metabolism was also observed with ketoconazole, indicating a minor contribution by CYP3A. Multivariate correlation data were consistent with the involvement of the cytochrome P450 enzymes 1A2 and 3A in the metabolism of ropinirole. Thus, it could be concluded that the major P450 enzyme responsible for ropinirole metabolism at lower (clinically relevant) concentrations is CYP1A2 with a contribution from CYP3A, particularly at higher concentrations.  相似文献   

14.
The metabolism of Org 30659 [(17alpha)-17-hydroxy-11-methylene-19-norpregna-4, 15-dien-20-yn-3-one], a new potent progestagen currently under clinical development by NV Organon for use in oral contraceptive and hormone replacement therapy, was studied in vivo after oral administration to rats and monkeys and in vitro using rat, rabbit, monkey, and human liver microsomes and rat and human hepatocytes. After oral administration of [7-3H]Org 30659 to rats and monkeys, Org 30659 was extensively metabolized in both species. Fecal excretion appeared to be the main route of elimination. In rats, opening of the A-ring, resulting in a 2-OH,4-carboxylic acid, 5alpha-H metabolite of Org 30659, was the major metabolic route in vivo. Other metabolic routes involved the introduction of an OH group at C15beta, followed by a shift of the Delta15-double bond to a 16/17-double bond with subsequent removal of the OH group at C17 and reduction of the 3-keto,Delta4 moiety followed by sulfate conjugation of the 3-OH substituent. These metabolic routes observed in vivo were also major routes in incubations with rat hepatocytes. In rat liver microsomes, Org 30659 was metabolized by reduction of the 3-keto,Delta4 moiety. Rat hepatocyte incubations with Org 30659 were more representative of the in vivo metabolism of Org 30659, compared with rat microsomal incubations. Both in vitro and in vivo, the majority of the metabolites were 3alpha-OH,4,5alpha-dihydro derivatives. In monkeys, Org 30659 was mainly metabolized at the C3- and C17-positions in vivo. The 3-keto moiety was reduced to both 3beta-OH and 3alpha-OH substituents. In addition to phase I metabolites, glucuronic acid conjugates were observed in vivo. In monkey liver microsomes, the 6beta-OH metabolite of Org 30659 was the major metabolite present. Similar to the monkey liver microsomes, rabbit and human liver microsomes converted Org 30659 to the 6beta-OH metabolite. This metabolite was also the major metabolite in incubations with human hepatocytes.  相似文献   

15.
An analytical method based on alkaline freeze drying, ultracentrifugation, and quantitative gas chromatography was established to differentiate between mucosal uptake, tissue accumulation, and serosal release of SCFA in pig hindgut. It was shown that serosal release of SCFA was substantially lower than mucosal uptake and tissue accumulation, indicating substantial degradation and/or metabolism during transepithelial movement.  相似文献   

16.
Retrotransposon Ty1 of Saccharomyces cerevisiae inserts a double-stranded Ty1 cDNA into the yeast genome by a reaction analogous to the integration mechanism used by retroviruses. A quantitative in vitro integration assay that directly detects integrative recombination products was developed for Ty1. Blunt-ended artificial radioactive substrates bearing Ty1 termini integrate into circular or linear target DNAs. The reaction is specific for native integrase isolated in the form of virus-like particles; virus-like particles prepared from integrase mutants were completely inactive in this assay. The products are radioactive, allowing direct detection after gel electrophoresis by autoradiography. Using this simple and amenable system, we characterized the biochemical requirements of the system and the structures of the major integration products. Two classes of products were detected: those that were the result of bona fide complete integration events (concerted reactions) and single-end joinings of substrate to target (half-reactions). Additionally, we used a genetic selection scheme to identify and characterize target sites of complete integration events into a circular target plasmid; a 5-bp target site duplication flanking the inserted DNA resembling the duplication characteristic of in vivo integration was observed.  相似文献   

17.
The objective of this study was to determine how alterations in intracellular thiol levels of oviduct epithelium occur in response to chemical or environmental conditions that could result in oxidative stress. Bovine oviducts were classified as follicular (F) or luteal (L) according to the reproductive stage of the ovary. Epithelial cells were harvested from the ampulla (AMP) and isthmus (ISTH) region of each oviduct, suspended in culture medium, and then plated into collagen-coated culture plates and grown to confluency. Basal levels of intracellular cysteine (Cys) and glutathione (GSH) were determined in oviduct epithelial cells and found to range from 0.36 to 0.46 pmol/ microg protein for Cys and from 5.3 to 6.4 pmol/ microg protein for GSH. Oxidized Cys values ranged from 21% to 39% of total Cys, whereas the oxidized GSH levels observed were from 21% to 28% of total GSH except in luteal ISTH, where they were significantly lower (6%). Confluent cells were exposed to GSH-depleting agents, L-buthionine-S,R-sulfoximine (BSO) or diethyl maleate (DEM), at doses ranging from 10 to 5000 microM. Both compounds depleted GSH in a dose-dependent manner, and 500 microM concentrations were chosen for subsequent studies with each compound. Cys levels in BSO (500 microM)-treated oviduct epithelial cells were transiently elevated over control values during the initial 5-h incubation; there was then a decrease in Cys levels by AMP but not ISTH oviduct epithelial cells. BSO-treated oviduct epithelial cells displayed a continued depletion of GSH over the incubation period and by 24 h were depleted by 38% to 61%. These results demonstrate a difference in GSH turnover in oviduct epithelial cells associated with reproductive stage. Exposure to DEM (500 microM) caused a decline in both Cys and GSH levels, which were partially restored after DEM removal. In general, L-staged oviduct epithelial cells were observed to be more competent at replenishing thiol stores than F-staged oviduct epithelial cells. Results from this study suggest that reproductive stage and region influence intracellular oviduct epithelium thiol status and therefore may affect how this tissue responds to chemicals or environmental conditions leading to oxidative stress.  相似文献   

18.
We have recently cloned the murine glucagon receptor (GR) gene and shown that it is expressed mainly in liver. In this organ, the glucagon-GR system is involved in the control of glucose metabolism as it initiates a cascade of events leading to release of glucose into the blood stream, which is a main feature in several physiological and pathological conditions. To better define the metabolic regulators of GR expression in liver we analyzed GR mRNA concentration in physiological conditions associating various glucose metabolic pathways in vivo and in vitro in the rat and in the mouse. First, we report that the concentration of the GR mRNA progressively increased from the first day of life to the adult stage. This effect was abolished when newborn rodents were fasted. Second, under conditions where intrahepatic glucose metabolism was active such as during fasting, diabetes, and hyperglycemic clamp, the concentration of GR mRNA increased independent of the origin of the pathway that generated the glucose flux. These effects were blunted when hyperglycemia was corrected by phlorizin treatment of diabetic rats or not sustained during euglycemic clamp. In accordance with these observations, we demonstrated that the glycolytic substrates glucose, mannose, and fructose, as well as the gluconeognic substrates glycerol and dihydroxyacetone, increased the concentration of GR mRNA in primary cultures of hepatocytes from fed rats. Glucagon blunted the effect of glucose without being dominant. The stimulatory effect of those substrates was not mimicked by the nonmetabolizable carbohydrate L-glucose or the glucokinase inhibitor glucosamine or when hepatocytes were isolated from starved rats. In addition, inhibitors of gluconeogenesis and lipolysis could decrease the concentration of GR mRNA from hepatocytes of starved rats. Combined, these data strongly suggest that glucose flux in the glycolytic and gluconeogenic pathways at the level of triose intermediates could control expression of GR mRNA and participate in controlling its own metabolism.  相似文献   

19.
The anesthetic halothane undergoes extensive oxidative and reductive biotransformation, resulting in metabolites that cause hepatotoxicity. Halothane is reduced anaerobically by cytochrome P450 (P450) to the volatile metabolites 2-chloro-1,1-difluoroethene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE). The purpose of this investigation was to identify the human P450 isoform(s) responsible for reductive halothane metabolism. CDE and CTE formation from halothane metabolism by human liver microsomes was determined by GC/MS analysis. Halothane metabolism to CDE and CTE under reductive conditions was completely inhibited by carbon monoxide, which implicates exclusively P450 in this reaction. Eadie-Hofstee plots of both CDE and CTE formation were nonlinear, suggesting multiple P450 isoform involvement. Microsomal CDE and CTE formation were each inhibited 40-50% by P450 2A6-selective inhibitors (coumarin and 8-methoxypsoralen) and 55-60% by P450 3A4-selective inhibitors (ketoconazole and troleandomycin). P450 1A-, 2B6-, 2C9/10-, and 2D6-selective inhibitors (7,8-benzoflavone, furafylline, orphenadrine, sulfaphenazole, and quinidine) had no significant effect on reductive halothane metabolism. Measurement of product formation catalyzed by a panel of cDNA-expressed P450 isoforms revealed that maximal rates of CDE formation occurred with P450 2A6, followed by P450 3A4. P450 3A4 was the most effective catalyst of CTE formation. Among a panel of 11 different human livers, there were significant linear correlations between the rate of CDE formation and both 2A6 activity (r = 0.64, p < 0.04) and 3A4 activity (r = 0.64, p < 0.03). Similarly, there were significant linear correlations between CTE formation and both 2A6 activity (r = 0.55, p < 0.08) and 3A4 activity (r = 0.77, p < 0.005). The P450 2E1 inhibitors 4-methylpyrazole and diethyldithiocarbamate inhibited CDE and CTE formation by 20-45% and 40-50%, respectively; however, cDNA-expressed P450 2E1 did not catalyze significant amounts of CDE or CTE production, and microsomal metabolite formation was not correlated with P450 2E1 activity. This investigation demonstrated that human liver microsomal reductive halothane metabolism is catalyzed predominantly by P450 2A6 and 3A4. This isoform selectivity for anaerobic halothane metabolism contrasts with that for oxidative human halothane metabolism, which is catalyzed predominantly by P450 2E1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号