首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of mitochondrial creatine kinase (mi-CK) in oxidative muscle was tested by studying the functional properties of in situ mitochondria in saponin-skinned muscle fibres from sarcomeric mi-CK-deficient (mutant) mice. Biochemical analyses showed that the lack of mi-CK in mutant muscle was associated with a decrease in specific activity of MM-CK in mutant ventricle, and increase in mutant soleus (oxidative) muscle. Lactate dehydrogenase activity and isoenzyme analysis showed an increased glycolytic metabolism in mutant soleus. No change was observed in ventricular muscle. In control animals, the apparent K(m) of mitochondrial respiration for ADP in ventricle and soleus (232 +/- 36 and 381 +/- 63 microM, respectively) was significantly reduced in the presence of creatine (52 +/- 8 and 45 +/- 12 microM, respectively). There was no change in the K(m) in oxidative fibres from mutant mice (258 +/- 27 and 399 +/- 66 microM, respectively) compared with control, though surprisingly, it was also significantly decreased in the presence of creatine (144 +/- 8 and 150 +/- 27 microM, respectively) despite the absence of mi-CK. It is proposed that in mutant (and perhaps normal) oxidative tissue, cytosolic MM-CK can relocate to the outer mitochondrial membrane, where it is coupled to oxidative phosphorylation by close proximity to porin, and the adenine nucleotide translocase. Such an effect can preserve the functioning of the CK shuttle and the energetic properties of mi-CK deficient tissue.  相似文献   

2.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To investigate the relationship among fibre type, oxidative potential, and Na(+)-K+ ATPase concentration in skeletal muscle, adult male Wistar rats weighing 259 +/- 8 g (mean +/- SE) were sacrificed and the soleus (SOL), extensor digitorum longus (EDL), red vastus lateralis (RV), and white vastus lateralis (WV) removed. These muscles were chosen as being representative of the two major fibre type populations: slow twitch (SOL) and fast twitch (EDL, RV, WV) and exhibiting either a high (SOL, EDL, RV) or low (WV) oxidative potential. Na(+)-K+ ATPase concentration (pmol.g-1 wet weight), measured by the [3H]ouabain binding technique, differed (p < 0.01) only between the WV (238 +/- 7.9) and the SOL (359 +/- 9.6), EDL (365 +/- 10), and RV (403 +/- 12). Similarly, muscle oxidative potential as measured by the maximal activity of citrate synthase was different (p < 0.01) only between the WV and the other three muscles. Citrate synthase activity (mumol.min-1.g-1 wet weight) was 4.0 +/- 0.7, 12.3 +/- 0.9, 9.1 +/- 0.7, and 11.3 +/- 1.0 in the WV, SOL, EDL, and RV, respectively. These results indicate that Na(+)-K+ ATPase concentration is not related to the speed of contraction but to the oxidative potential of the muscle. Since chronic activity is a primary determinant of oxidative potential, it would be expected that increases in Na(+)-K+ ATPase would accompany increases in muscle utilization.  相似文献   

4.
The purpose of this work was to investigate the mechanism of regulation of mitochondrial respiration in vivo in different muscles of normal rat and mice, and in transgenic mice deficient in desmin. Skinned fiber technique was used to study the mitochondrial respiration in the cells in vivo in the heart, soleus and white gastrocnemius skeletal muscles of these animals. Also, cardiomyocytes were isolated from the normal rat heart, permeabilized by saponin and the "ghost" (phantom) cardiomyocytes were produced by extraction of myosin with 800 mM KCl. Use of confocal immunofluorescent microscopy and anti-desmin antibodies showed good preservation of mitochondria and cytoskeletal system in these phantom cells. Kinetics of respiration regulation by ADP was also studied in these cells in detail before and after binding of anti-desmine antibodies with intermediate filaments. In skinned cardiac or soleus skeletal muscle fibers but not in fibers from fast twitch skeletal muscle the kinetics of mitochondrial respiration regulation by ADP was characterized by very high apparent Km (low affinity) equal to 300-400 microM, exceeding that for isolated mitochondria by factor of 25. In skinned fibers from m. soleus, partial inhibition of respiration by NaN3 did not decrease the apparent Km for ADP significantly, this excluding the possible explanation of low apparent affinity of mitochondria to ADP in these cells by its rapid consumption due to high oxidative activity and by intracellular diffusion problems. However, short treatment of fibers with trypsin decreased this constant value to 40-70 microM, confirming the earlier proposition that mitochondrial sensitivity to ADP in vivo is controlled by some cytoplasmic protein. Phantom cardiomyocytes which contain mostly mitochondria and cytoskeleton and retain the normal shape, showed also high apparent Km values for ADP. Therefore, they are probably the most suitable system for studies of cellular factors which control mitochondrial function in the cells in vivo. In these phantom cells anti-desmin antibodies did not change the kinetics of respiration regulation by ADP. However, in skinned fibers from the heart and m. soleus of transgenic desmin-deficient mice some changes in kinetics of respiration regulation by ADP were observed: in these fibers two populations of mitochondria were observed, one with usually high apparent Km for ADP and the second one with very low apparent Km for ADP. Morphological observations by electron microscopy confirmed the existence of two distinct cellular populations in the muscle cells of desmin-deficient mice. The results conform to the conclusion that the reason for observed high apparent Km for ADP in regulation of oxidative phosphorylation in heart and slow twitch skeletal muscle cells in vivo is low permeability of mitochondrial outer membrane porins but not diffusion problems of ADP into and inside the cells. Most probably, in these cells there is a protein associated with cytoskeleton, which controls the permeability of the outer mitochondrial porin pores (VDAC) for ADP. Desmin itself does not display this type of control of mitochondrial porin pores, but its absence results in appearance of cells with disorganised structure and of altered mitochondrial population probably lacking this unknown VDAC controlling protein. Thus, there may be functional connection between mitochondria, cellular structural organisation and cytoskeleton in the cells in vivo due to the existence of still unidentified protein factor(s).  相似文献   

5.
Nitric oxide synthase (NOS) activity was measured in extensor digitorum longus (EDL) and soleus muscles during postnatal development in the rat. At 1 and 2 weeks of age, similar low levels were found in both muscles. After 2 weeks, activity increased significantly only in EDL. Adult NOS activity was significantly higher in EDL than soleus. Thus, the preferential expression of NOS in fast muscle only occurs once the adult pattern of motor activity is established.  相似文献   

6.
Functional properties of in situ mitochondria and of mitochondrial creatine kinase were studied in saponin-skinned fibers taken from normal and M-creatine kinase-deficient mice. In control animals, apparent Km values of mitochondrial respiration for ADP in cardiac (ventricular) and slow-twitch (soleus) muscles (137 +/- 16 microM and 209 +/- 10 microM, respectively) were manyfold higher than that in fast-twitch (gastrocnemius) muscle (7.5 +/- 0.5 microM). Creatine substantially decreased the Km values only in cardiac and slow-twitch muscles (73 +/- 11 microM and 131 +/- 21 microM, respectively). As compared to control, in situ mitochondria in transgenic ventricular and slow-twitch muscles showed two times lower Km values for ADP, and the presence of creatine only slightly decreased the Km values. In mutant fast-twitch muscle, a decrease rather than increase in mitochondrial sensitivity to ADP occurred, but creatine still had no effect. Furthermore, in these muscles, relatively low oxidative capacity was considerably elevated. It is suggested that in the mutant mice, impairment of energy transport function in ventricular and slow-twitch muscles is compensated by a facilitation of adenine nucleotide transportation between mitochondria and cellular ATPases; in fast-twitch muscle, mainly energy buffering function is depressed, and that is overcome by an increase in energy-producing potential.  相似文献   

7.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3-15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

8.
To determine if chronic heart failure (CHF) leads to functional or structural alterations of skeletal muscle, we compared intracellular Ca2+ signaling, contractility, and the rate of fatigue development, together with electron microscopy (EM), in skeletal muscle preparations from rats with myocardial infarction-induced CHF versus sham-operated control rats. Bundles of 100 to 200 cells were dissected from the extensor digitorum longus (EDL) muscle of control (n = 13) and CHF (n = 19) rats and were either loaded with aequorin or fixed for EM. Muscles from CHF rats exhibited depressed tension development compared with control muscles during twitches (1.4 +/- 0.2 versus 2.8 +/- 0.7 g/mm2, P < .05) and maximal tetani (5.3 +/- 1.4 versus 10.7 +/- 2.4 g/mm2, P < .05). Depressed tension in CHF was accompanied by reduced quantitative [Ca2+]i release during twitches (0.7 +/- 0.1 versus 0.4 +/- 0.1 microM, P < .05) and during maximal tetani (1.8 +/- 0.3 versus 0.9 +/- 0.2 microM, P < .05). Skeletal muscle from CHF rats also demonstrated prolonged intracellular Ca2+ transients during twitches and tetani and accelerated fatigue development. EM revealed a lack of cellular atrophy in the CHF rats. In conclusion, EDL skeletal muscle from rats with CHF had intrinsic abnormalities in excitation-contraction coupling unrelated to cellular atrophy. These findings indicate that CHF is a condition accompanied by EDL skeletal muscle dysfunction.  相似文献   

9.
1. The direct short-term effects of troglitazone on parameters of glucose metabolism were investigated in rat soleus muscle strips. 2. In muscle strips from Sprague-Dawley rats, troglitazone (3.25 micromol l(-1)) increased basal and insulin-stimulated glucose transport by 24% and 41%, respectively (P<0.01 each). 3. In the presence of 5 nmol l(-1) insulin, stimulation of glucose transport by 3.25 micromol l(-1) troglitazone was accompanied by a 36% decrease in glycogen synthesis, while glycolysis was increased (112% increase in lactate production) suggesting a catabolic response of intracellular glucose handling. 4. Whereas insulin retained its stimulant effect on [3H]-2-deoxy-glucose transport in hypoxia-stimulated muscle (by 44%; c.p.m. mg(-1) h(-1): 852+/-77 vs 1229+/-75, P<0.01), 3.25 micromol l(-1) troglitazone failed to increase glucose transport under hypoxic conditions (789+/-40 vs 815+/-28, NS) suggesting that hypoxia and troglitazone address a similar, non-insulin-like mechanism. 5. No differences between troglitazone and hypoxia were identified in respective interactions with insulin. 6. Troglitazone acutely stimulated muscle glucose metabolism in a hypoxia/contraction-like manner, but it remains to be elucidated whether this contributes to the long-term antidiabetic and insulin enhancing potential in vivo or is to be regarded as an independent pharmacological effect.  相似文献   

10.
Mitochondrial inclusion bodies are often described in skeletal muscle of patients suffering diseases termed mitochondrial myopathies. A major component of these structures was discovered as being mitochondrial creatine kinase. Similar creatine kinase enriched inclusion bodies in the mitochondria of creatine depleted adult rat cardiomyocytes have been demonstrated. Structurally similar inclusion bodies are observed in mitochondria of ischemic and creatine depleted rat skeletal muscle. This paper describes the various methods for inducing mitochondrial inclusion bodies in rodent skeletal muscle, and compares their effects on muscle metabolism to the metabolic defects of mitochondrial myopathy muscle. We fed rats with a creatine analogue guanidino propionic acid and checked their solei for mitochondrial inclusion bodies, with the electron microscope. The activity of creatine kinase was analysed by measuring creatine stimulated oxidative phosphorylation in soleus skinned fibres using an oxygen electrode. The guanidino propionic acid-rat soleus mitochondria displayed no creatine stimulation, whereas control soleus did, even though the GPA solei had a five fold increase in creatine kinase protein per mitochondrial protein. The significance of these results in light of their relevance to human mitochondrial myopathies and the importance of altered cell energetics and metabolism in the formation of these crystalline structures are discussed.  相似文献   

11.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12-15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles.  相似文献   

12.
Clenbuterol, a beta 2-adrenoceptor agonist, has therapeutic potential for the treatment of muscle-wasting diseases, yet its effects, especially at the single-fiber level, have not been fully characterized. Male C57BL/10 mice were allocated to three groups: Control-Treated mice were administered clenbuterol (2 mg.kg-1. day-1) via their drinking water for 15 wk; Trained-Treated mice underwent low-intensity training (unweighted swimming, 5 days/wk, 1 h/day) in addition to receiving clenbuterol; and Control mice were sedentary and untreated. Contractile characteristics were determined on membrane-permeabilized fibers from the extensor digitorum longus (EDL) and soleus muscles. Fast fibers from the EDL and soleus muscles of Treated mice exhibited decreases in Ca2+ sensitivity. Endurance exercise offset clenbuterol's effects, demonstrated by similar Ca2+ sensitivities in the Trained-Treated and Control groups. Long-term clenbuterol treatment did not affect the normalized maximal tension of fast or slow fibers but increased the proportion of fast fibers in the soleus muscle. Training increased the proportion of fibers with high and intermediate succinate dehydrogenase activity in the EDL and soleus muscles, respectively. If clenbuterol is to be used for treating muscle-wasting disorders, some form of low-intensity exercise might be encouraged such that potentially deleterious slow-to-fast fiber type transformations are minimized. Indeed, in the mouse, low-intensity exercise appears to prevent these effects.  相似文献   

13.
Adult male albino mice were given single subcutaneous injections of either mipafox (110 mumol/kg) or ecothiopate (0.5 mumol/kg), two organophosphorus compounds (OPs). Acetylcholinesterase activity was measured in the soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscles. At 7 and 28 days after dosing, in vitro electrophysiological measurements were carried out in the soleus and EDL. Action potentials and end-plate potentials were evoked at 30 Hz and recorded intracellularly from single muscle fibers. The amplitudes, time course, and latencies of these potentials were measured and the variability (jitter) of latencies was calculated. Recordings after mipafox were also made with 3-Hz stimulation. Acetylcholinesterase activity was inhibited by mipafox (65% in the soleus; 76% in the EDL) and ecothiopate (59% in the soleus; 42% in the EDL). Mipafox and ecothiopate both increased postjunctional (muscle action potential) jitter in the soleus and EDL at 7 days after dosing. Organophosphates caused an increase in end-plate potential amplitudes in the soleus. Mipafox caused an increase in prejunctional (end-plate potential) jitter at 28 days after dosing in both muscles. A single dose of ecothiopate also caused an increase in prejunctional jitter at 28 days in the soleus. The OP-induced increase in jitter was different at different frequencies of stimulation. The results show that there are electrophysiological changes in both muscles after administration of organophosphorus compounds. The slow-twitch soleus appears more sensitive to prejunctional changes caused by OPs than the fast-twitch EDL.  相似文献   

14.
In patients with chronic obstructive pulmonary disease (COPD), muscle wasting can occur independently of fat loss, suggesting disturbances in protein metabolism. In order to provide more insight in amino-acid (AA) metabolism in patients with stable COPD, we examined arterial plasma and anterior tibialis muscle AA levels, comparing 12 COPD patients with eight age-matched healthy control subjects. We also studied relationships between AA levels, the acute phase response as measured by lipopolysaccharide-binding protein (LBP), and resting energy expenditure (REE). In contrast to findings in acute diseases associated with muscle wasting, we found increased muscle glutamine (GLN) levels in our patient group (mean +/- SEM = 10,782 +/- 770 versus 7,844 +/- 293 micromol/kg wet weight, p < 0. 01). Furthermore, muscle arginine, ornithine, and citrulline were significantly increased in the patient group, whereas glutamic acid was decreased. In plasma, the sum of all AA (SumAA) was decreased in the patient group (2,595 +/- 65 versus 2,894 +/- 66 micromol/L, p < 0.01), largely because of decreased levels of alanine (254 +/- 10 versus 375 +/- 25 micromol/L, p < 0.0001), GLN (580 +/- 17 versus 641 +/- 17 micromol/L, p < 0.05), and glutamic acid (91 +/- 5 versus 130 +/- 10 micromol/L, p < 0.01). LBP levels were increased in COPD patients as compared with controls (11.7 +/- 4.5 versus 8.6 +/- 1.0 mg/L, p < 0.05), and showed a positive correlation with REE (r = 0. 49, p = 0.03), a negative correlation with the SumAA in plasma (r = -0.76, p < 0.0001), and no correlation with muscle AA levels. In conclusion, various disturbances in plasma and muscle AA levels were found in COPD patients. A relationship between the observed decreased plasma AA levels and inflammation was suggested.  相似文献   

15.
Creatine kinase (CK) is an enzyme central to cellular high-energy phosphate metabolism in muscle. To characterize the physiological role of CK in respiratory muscle during dynamic contractions, we compared the force-velocity relationships, power, and work output characteristics of the diaphragm (Dia) from mice with combined myofibrillar and sarcomeric mitochondrial CK deficiency (CK[-/-]) with CK-sufficient controls (Ctl). Maximum velocity of shortening was significantly lower in CK[-/-] Dia (14.1 +/- 0.9 Lo/s, where Lo is optimal fiber length) compared with Ctl Dia (17.5 +/- 1.1 Lo/s) (P < 0.01). Maximum power was obtained at 0.4-0.5 tetanic force in both groups; absolute maximum power (2,293 +/- 138 W/m2) and work (201 +/- 9 J/m2) were lower in CK[-/-] Dia compared with Ctl Dia (2,744 +/- 146 W/m2 and 284 +/- 26 J/m2, respectively) (P < 0.05). The ability of CK[-/-] Dia to sustain shortening during repetitive isotonic activation (75 Hz, 330-ms duration repeated each second at 0.4 tetanic force load) was markedly impaired, with CK[-/-] Dia power and work declining to zero by 37 +/- 4 s, compared with 61 +/- 5 s in Ctl Dia. We conclude that combined myofibrillar and sarcomeric mitochondrial CK deficiency profoundly impairs Dia power and work output, underscoring the functional importance of CK during dynamic contractions in skeletal muscle.  相似文献   

16.
Inorganic phosphate (Pi) release was determined by means of a fluorescent Pi-probe in single permeabilized rabbit soleus and psoas muscle fibers. Measurements of Pi release followed photoliberation of approximately 1.5 mM ATP by flash photolysis of NPE-caged ATP in the absence and presence of Ca2+ at 15 degrees C. In the absence of Ca2+, Pi release occurred with a slow rate of 11 +/- 3 microM . s-1 (n = 3) in soleus fibers and 23 +/- 1 microM . s-1 (n = 10) in psoas fibers. At saturating Ca2+ concentrations (pCa 4.5), photoliberation of ATP was followed by rapid force development. The initial rate of Pi release was 0.57 +/- 0.05 mM . s-1 in soleus (n = 13) and 4.7 +/- 0.2 mM . s-1 in psoas (n = 23), corresponding to a rate of Pi release per myosin head of 3.8 s-1 in soleus and 31.5 s-1 in psoas. Pi release declined at a rate of 0.48 s-1 in soleus and of 5.2 s-1 in psoas. Pi release in soleus was slightly faster in the presence of an ATP regenerating system but slower when 0.5 mM ADP was added. The reduction in the rate of Pi release results from an initial redistribution of cross-bridges over different states and a subsequent ADP-sensitive slowing of cross-bridge detachment.  相似文献   

17.
The purpose of this study was to test the hypothesis that muscle fiber length and joint moment arm are combined in such a way that maximum muscle force is produced during locomotion. Plantarflexor (soleus, SOL and medial gastrocnemius, MG) and dorsiflexor (extensor digitorum longus, EDL and tibialis anterior, TA) muscle architecture in the mouse was measured along with their associated moment arms. Fiber length varied significantly between muscles ranging from 5.7 +/- 0.2 mm (MG) to 7.6 +/- 0.2 mm (TA). Plantarflexor moment arms were over twice as large as dorsiflexor moment arms (1.88 +/- 0.06 mm vs. 0.84 +/- 0.03 mm) suggesting a greater muscle length change with joint angle for plantarflexors compared to dorsiflexors. Using a simple muscle-joint model, the active sarcomere length range in these muscle groups was calculated and proved to be quite similar between functional groups. The active range for dorsiflexors was 2.2-2.4 microns, while the active range for plantarflexors was 2.2-2.5 microns, indicating that both muscle groups operate primarily near the plateau of their length tension-relation. Finally, when calculating force produced by muscles during locomotion, the combination of moment arm and fiber length measured in all muscle groups yielded muscle-joint systems that produced near maximal forces at the velocities modeled. These data indicate that fiber length and moment arm appear to be coordinated to yield the greatest possible force production during locomotion.  相似文献   

18.
Congestive heart failure (CHF) is characterized by a limb skeletal muscle myopathy with shift from the slow aerobic, fatigue resistant fibers, to the fast, anaerobic ones, and muscle bulk loss. Apoptosis (A) has been recently demonstrated to play a role in several cardiovascular diseases. AIM OF THE STUDY: we have investigated the role of A in the skeletal muscle of the hindlimbs in an experimental model of CHF. ANIMALS AND METHODS: CHF was induced in 7 males 80-100 g Sprague-Dawley rats with 30 mg/kg monocrotaline. Five age and diet matched controls were also studied. The time course of A was also studied in additional animals at day 0, 17, 24 and 30 days. RESULTS: At day 27 the electrophoretic analysis of myosin heavy chains (MHCs) demonstrated in the CHF rats the occurrence of a myopathy, with disappearance of slow MHC1 in the Tibialis Anterior (TA), and a significant shift from the slow to the fast isoforms in the soleus and EDL. With in situ DNA nick-end labelling (TUNEL) we found in the TA of CHF animals a significantly higher number of TUNEL positive nuclei (0.43 +/- 0.24 v 0.08 +/- 0.02, P<0.02 and TUNEL positive myonuclei (0.031 +/- 0.012 v 0.0025 +/- 0.005, P<0.02). The time course of A showed a progressive rise in interstitial and myocyte A, accompanied by a drop in fibers cross-sectional area and muscle weight/body weight, that came out to be significant at 30 days. Western blot showed a lower expression of Bcl-2 at 27 days and a further drop at 30 days in the CHF rats. Double staining for TUNEL and antibody against anti-MHC2a and anti MHC2b + 2x showed that A occurs non-selectively in all the myofiber types. BetaANP and Right Ventricle Mass/Volume (RVM/V) correlated significantly with total apoptotic nuclei. CONCLUSIONS: In CHF myofibers A can lead to muscle atrophy. Endothelial cells A may produce an imbalance in myofibres nutrition with relative ischemia that triggers the preferential synthesis of fast anaerobic myosin as an adaptive mechanism or alternatively induce myofibres death.  相似文献   

19.
After partial denervation, the remaining motor units (MUs) of adult fast extensor digitorum longus muscle (EDL) expand their peripheral field. The time course of this event was studied using tension measurement and recordings of electromyographic (EMG) activity. The results show that after section of the L4 spinal nerve, when only 5.3 +/- 0.63 of the 40 MUs normally supplying EDL muscle remain, the force of individual motor units starts to increase between the 1st and 2nd week after the operation and continues to do so for a further week. The drastic reduction of the number of motoneurones supplying the fast EDL leads to an increase in activity of the remaining MUs. In the 1st week after partial denervation, there was a sharp increase in the EMG activity of remaining motor units. During the next 12 days, this increase became less marked, but EMG activity remained nevertheless significantly higher than that of the unoperated EDL muscle. Many MUs became tonically active during posture. The EMG activity pattern during locomotion was also altered, so that the burst duration was positively correlated with the step cycle duration. Moreover, shortly after partial denervation, the interlimb coordination was disturbed but returned to its original symmetrical use 1-2 weeks later.  相似文献   

20.
We examined the novel interaction of hyperthyroidism and hindlimb suspension on the pattern of myosin heavy chain (MHC) expression (mRNA and protein) in skeletal muscles. Female Sprague-Dawley rats were assigned to four groups: 1) normal control (Con); 2) thyroid hormone treated [150 micrograms 3,5,3'-triiodothyronine (T3). kg-1. day-1] (T3); 3) hindlimb suspension (HS); or 4) T3-treated and HS (T3 + HS). Results show for the first time the novel observation that the combination T3 + HS induces a rapid and sustained, marked (80-90%) downregulation of type I MHC gene expression that is mirrored temporally by concomitant marked upregulation of type IIb MHC gene expression, as evidenced by the de novo synthesis of type IIb MHC protein in the soleus. The fast type IIx MHC isoform showed a differential response among the experimental groups, generally increasing with the separate and combined treatments in both the soleus and vastus intermedius muscles while decreasing in the plantaris muscles. The fast type IIa MHC was the least responsive to suspension of the MHCs and reflected its greatest responsiveness to T3 treatment while also undergoing differential adaptations in slow vs. fast muscle (increases vs. decreases, respectively). These results confirm previous findings that all four adult MHC genes are sensitive to T3 and suspension in a muscle-specific manner. In addition, we show that T3 + HS can interact synergistically to create novel adaptations in MHC expression that could not be observed when each factor was imposed separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号