首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐cycle fatigue data of type 304 stainless steel obtained under axial‐torsional loading of variable amplitudes are analyzed using four multiaxial fatigue parameters: SWT, KBM, FS and LKN. Rainflow cycle counting and Morrow's plastic work interaction rule are used to calculate fatigue damage. The performance of a fatigue model is dependent on the fatigue parameter, the critical plane and the damage accumulation rule employed in the model. The conservatism and non‐conservatism of predicted lives are examined for some combinations of these variables. A new critical plane called the weight function‐critical plane is introduced for variable amplitude loading. This approach is found to improve the KBM‐based life predictions.  相似文献   

2.
A series of multiaxial low-cycle fatigue experiments was performed on 45 steel under non-proportional loading. The present evaluations of multiaxial low-cycle fatigue life were systematically analysed. A combined energy density and critical plane concept is proposed that considers different failure mechanisms for a shear-type failure and a tensile-type failure, and from which different damage parameters for the critical plane-strain energy density are proposed. For tensile-type failures in material 45 steel and shear-type failures in material 42CrMo steel, the new damage parameters permit a good prediction for multiaxial low-cycle fatigue failure under non-proportional loading. The currently used critical plane models are a special and simple form of the new model.  相似文献   

3.
A procedure for nonproportional low-cycle fatigue life assessment is proposed for various metal alloys that differ in structure. It is based on the Pisarenko-Lebedev equivalent strain and a correcting function allowing for nonproportional loading effects such as additional hardening and life reduction in the case of nonproportional strain paths. The calculated results are compared to the experimental ones reported elsewhere for steels, titanium-, nickel-, and aluminum-based alloys. A good agreement between the results is observed for all the materials and strain paths studied. The accuracy of the calculations for nonproportional loading is found to be same as in the case of proportional loading. __________ Translated from Problemy Prochnosti, No. 4, pp. 31–39, July–August, 2007.  相似文献   

4.
A computerized procedure is presented and evaluated for application examples of long-life fatigue analyses of metallic materials under complex multiaxial loading. The method is based on the stress invariants and uses the minimum circumscribed ellipse approach for evaluating the effective shear stress amplitude under complex multiaxial loading. The applicability of the procedure for handling non-proportional loading is examined through typical examples such as combined normal/shear stresses and combined bi-axial normal stresses with complex stress time histories. The effects of phase shift angles, frequency ratios and waveforms on fatigue endurance were re-analysed and compared with available experimental results from the literature. The comparison shows that the presented procedure based on stress invariants is a potential conservative engineering approach, very suitable for fast fatigue evaluation in the integrated computer aided fatigue design.  相似文献   

5.
Some popular concepts for reducing three variable stress components σx(t), σy(t), τxy(t) to one equivalent amplitude spectrum, and the use of the linear damage accumulation hypothesis, have been evaluated as not fully correct when these components vary non-proportionally and arbitrarily. A different approach is suggested: computing damage accumulation by means of an integral directly on the non-radial arbitrary path, called the ‘trajectory’, described in the σx−σy plane when τxy(t) = 0, in the σx−τxy plane when σy(t) = 0, or in a special coordinate space where this trajectory is invariant of stress directions x, y. If the trajectory is random, it may be replaced by a statistical two-dimensional density of distribution. The integrand, called the R-function, is derived from various SN fatigue curves under different determined loadings. Thus the traditional SN function is replaced by the R-function for direct damage summation with differential analysis, which allows the loading to be arbitrary (non-cyclic, multiaxial and non-proportional). The method works by means of computer programs and is applicable to real structures.  相似文献   

6.
Long life fatigue under multiaxial loading   总被引:2,自引:0,他引:2  
A life prediction model in the field of high-cycle (i.e. long-life) fatigue is presented in this paper. The proposed model applies in the case of constant amplitude multiaxial proportional and non-proportional loading. The problems of the fatigue limit criterion and of the fatigue life prediction are both addressed and comparisons with experimental data are shown. Some limited discussion of the stress gradient effect is also offered. Although the particular model developed here is better suited for ferritic steels, it is explained in the paper that the methodology used to obtain this model can be adequately adapted to derive mathematically consistent models for other classes of metallic materials.  相似文献   

7.
The paper describes the experiments aimed at the extension of the method early proposed for the uniaxial fatigue monitoring to the multiaxial modes of loading. The common denominator for both methods approach is based on the possibility of computer‐aided optical analysis of extrusion/intrusion structure, called often surface deformation relief, to be used for quantitative assessment of accumulated fatigue damage and remaining life. Experimental data obtained under the different modes of loading are presented and described as well as some objectives for the future activities are outlined.  相似文献   

8.
In this study, we investigate the prediction of fatigue life at a high number of cycles (>5 × 104 cycles) for three-dimensional structures. An approach has been developed that includes the results of fatigue tests in a program using the finite element method. Numerical fatigue life calculations using three fatigue criteria were conducted to predict S – N curves. To complete the study and validate this approach, tests were carried out on FGS 700/2 cast iron with different geometrical structures and different fatigue loadings.  相似文献   

9.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

10.
A high‐cycle fatigue life model for structures subjected to variable amplitude multiaxial loading is presented in this paper. It treats any kind of repeated blocks of variable amplitude multiaxial loading without using a cycle counting method. This model based on a mesoscopic approach is characterized by the following features: (i) the choice of a damage factor related to the accumulated mesoscopic plastic strain per stabilised cycle; (ii) the use of a mesoscopic mechanical behaviour taking into account the fatigue mechanisms such as plasticity and void growth. This behaviour is a von Mises elastoplastic model with linear kinematic hardening and hydrostatic stress dependent yield stress. The fatigue life model has six parameters identified with one SN curve and two fatigue limits. In‐phase and out‐of‐phase experimental tests from the literature are simulated. The predicted fatigue lives are compared to experimental ones.  相似文献   

11.
A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.  相似文献   

12.
In the present study, a stochastic model is developed for the low-cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low-cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In the present study, a critical plane method proposed by Kandil et al . ( Metals Soc., London 280, 203–210, 1982) maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good aggreement with experimental results.  相似文献   

13.
A fatigue criterion for general multiaxial loading   总被引:7,自引:1,他引:6  
An incremental fatigue damage model is proposed. The model incorporates the critical plane concept in multiaxial fatigue, plastic strain energy and material memory in cyclic plasticity. With an incremental form the model does not require a cycle counting method for variable amplitude loading. The model is designed to consider mean stress and loading sequence effects. Features of the new model are discussed and the determination of material constants is detailed. Verification of the model is achieved by comparing the predictions obtained by using the new model and experimental data of four materials under different loading conditions.  相似文献   

14.
Based on experimental data found in literatures, four traditionally multiaxial fatigue life criteria are analyzed and verified. It is discovered that these conventional criteria cannot reflect well the combined effect both under tension and torsion loadings for some materials, such as 6082-T6 and AlCu4Mg1, due to lack of enough consideration about the influence of stress amplitude ratio and stress level on fatigue life even under proportional loading. In order to solve this problem, a new approach of fatigue life prediction, based on the equal-life curve, is proposed and it is composed of three parts: the multiaxial fatigue life surface, a new path-dependent factor for multiaxial high-cycle fatigue and a material parameter describing material sensitivity to non-proportional loading. Finally, the precision of the presented approach is systematically checked against the experimental data found in literatures for four different materials under proportional and non-proportional loadings.  相似文献   

15.
In order to assess the fatigue behaviour of structural components under a complex (cyclic or random) multiaxial stress history, methods based on damage mechanics concepts can be employed. In this paper, a model for fatigue damage evaluation in the case of an arbitrary multiaxial loading history is proposed by using an endurance function which allows us to determine the damage accumulation up to the final failure of the material. By introducing an evolution equation for the endurance function, the final collapse can be assumed to occur when the damage D is complete, that is when D reaches the unity. The parameters of this model, which adopts the stress invariants and the deviatoric stress invariants to quantify the damage phenomenon, are determined through a Genetic Algorithm once experimental data on the fatigue behaviour of the material being examined are known for some complex stress histories. With respect to traditional approaches to multiaxial fatigue assessment, the proposed model presents the following advantages: (1) the evaluation of a critical plane is not necessary; (2) no cycle counting algorithm to determine the fatigue life is required, because it considers the progressive damage process during the fatigue load history; (3) the model can be applied to any kind of stress history (uniaxial cyclic loading, multiaxial in‐phase or out‐of‐phase cyclic loading, uniaxial or multiaxial random loading).  相似文献   

16.
A multiaxial fatigue criterion for random loading   总被引:2,自引:1,他引:1  
ABSTRACT A multiaxial fatigue criterion for random loading is proposed. Firstly, the orientation of the critical plane, where fatigue life estimation is carried out, is determined from the weighted mean position of the principal stress directions. Then, the scalar value of the normal stress vector N (t) perpendicular to the critical plane is taken as the cycle counting variable since the direction of such a vector is fixed with respect to time (conversely to the time‐varying direction of the shear stress vector C (t)), and a nonlinear combination of normal and shear stress components acting on the critical plane is used to define an equivalent stress amplitude. Finally, a damage accumulation model is employed to process such an equivalent stress amplitude and to determine fatigue endurance. This criterion is herein applied to some relevant random fatigue tests (proportional bending and torsion).  相似文献   

17.
Fatigue tests under variable amplitude multiaxial loading were conducted on titanium alloy TC4 tubular specimens. A method to estimate the fatigue life under variable amplitude multiaxial loading has been proposed. Multiaxial fatigue parameter based on Wu–Hu–Song approach and rainflow cycle counting and Miner–Palmgren rule were applied in this method. The capability of fatigue life prediction for the proposed method was checked against the test data of TC4 alloy under variable amplitude multiaxial loading. The prediction results are all within a factor of two scatter band of the test results.  相似文献   

18.
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading.  相似文献   

19.
A hybrid frequency–time domain method for predicting multiaxial fatigue life under random loading is developed on the basis of combination of the frequency domain and time domain analysis. The critical damage point of the structure is determined by the frequency domain equivalent stress method. Then, the fatigue life prediction is made in time domain by generating random load‐time histories from the power spectral density of the critical point. The method is validated with the random vibration fatigue test of 7075‐T6 aluminium alloy. It has been shown that the results of fatigue life calculated by hybrid method are well correlated with the experiment.  相似文献   

20.
In the present paper, a damage gradient model combing the damage concept with the theory of critical distance (TCD) is established to estimate the fatigue lives of notched metallic structures under multiaxial random vibrations. Firstly, a kind of notched metallic structure is designed, and the biaxial random vibration fatigue tests of the notched metallic structures are carried out under different correlation coefficients and phase differences between two vibration axes. Then, the fatigue lives of the notched metallic structures are evaluated utilizing the proposed model with the numerical simulations. Finally, the proposed model is validated by the experiment results of the biaxial random vibration fatigue tests. The comparison results demonstrate that the proposed model can provide fatigue life estimation with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号