首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Wavelets are a relative newcomer to signal decomposition, and offer a flexible analog transform to provide multiresolution signal decomposition. Their advantages over Fourier and short-time Fourier transforms (STFTs) are significant, and the linkages and practical commonalities of these two transform techniques have generated interdisciplinary research activities among mathematicians, physicists and electrical engineers. This article presents the fundamentals of wavelet transform theory. In this context, the subject's mathematical rigor is avoided. We discuss the differences between the conventional STFT and wavelet transforms from a time-frequency "tiling" point of view. Then, we highlight the significant role of discrete-time filter banks in wavelet theory, and assess the practicality of wavelets in signal processing applications  相似文献   

2.
Presents a method to analyze and filter digital signals of finite duration by means of a time-frequency representation. This is done by defining a purely invertible discrete transform, representing a signal either in the time or in the time-frequency domain, as simply as possible with the conventional discrete Fourier transform between the time and the frequency domains. The wavelet concept has been used to build this transform. To get a correct invertibility of this procedure, the authors have proposed orthogonal and periodic basic discrete wavelets. The properties of such a transform are described, and examples on brain-evoked potential signals are given to illustrate the time-frequency filtering possibilities  相似文献   

3.
We propose a simple and efficient technique for designing translation invariant dyadic wavelet transforms (DWTs) in two dimensions. Our technique relies on an extension of the work of Duval-Destin et al. (1993) where dyadic decompositions are constructed starting from the continuous wavelet transform. The main advantage of this framework is that it allows for a lot of freedom in designing two-dimensional (2-D) dyadic wavelets. We use this property to construct directional wavelets, whose orientation filtering capabilities are very important in image processing. We address the efficient implementation of these decompositions by constructing approximate QMFs through an L (2) optimization. We also propose and study an efficient implementation in the Fourier domain for dealing with large filters.  相似文献   

4.
A binary wavelet decomposition of binary images   总被引:7,自引:0,他引:7  
We construct a theory of binary wavelet decompositions of finite binary images. The new binary wavelet transform uses simple module-2 operations. It shares many of the important characteristics of the real wavelet transform. In particular, it yields an output similar to the thresholded output of a real wavelet transform operating on the underlying binary image. We begin by introducing a new binary field transform to use as an alternative to the discrete Fourier transform over GF(2). The corresponding concept of sequence spectra over GF(2) is defined. Using this transform, a theory of binary wavelets is developed in terms of two-band perfect reconstruction filter banks in GF(2). By generalizing the corresponding real field constraints of bandwidth, vanishing moments, and spectral content in the filters, we construct a perfect reconstruction wavelet decomposition. We also demonstrate the potential use of the binary wavelet decomposition in lossless image coding.  相似文献   

5.
本文介绍了从傅里叶变换到盖伯变换,以及子波变换的发展。分析了它们的区别和联系。描述了连续和离散的子波变换,讨论了子波函数成立的容许性条件和子波变换的一些基本性质。  相似文献   

6.
In this paper, we use polyharmonic B-splines to build multidimensional wavelet bases. These functions are nonseparable, multidimensional basis functions that are localized versions of radial basis functions. We show that Rabut's elementary polyharmonic B-splines do not converge to a Gaussian as the order parameter increases, as opposed to their separable B-spline counterparts. Therefore, we introduce a more isotropic localization operator that guarantees this convergence, resulting into the isotropic polyharmonic B-splines. Next, we focus on the two-dimensional quincunx subsampling scheme. This configuration is of particular interest for image processing because it yields a finer scale progression than the standard dyadic approach. However, up until now, the design of appropriate filters for the quincunx scheme has mainly been done using the McClellan transform. In our approach, we start from the scaling functions, which are the polyharmonic B-splines and, as such, explicitly known, and we derive a family of polyharmonic spline wavelets corresponding to different flavors of the semi-orthogonal wavelet transform; e.g., orthonormal, B-spline, and dual. The filters are automatically specified by the scaling relations satisfied by these functions. We prove that the isotropic polyharmonic B-spline wavelet converges to a combination of four Gabor atoms, which are well separated in the frequency domain. We also show that these wavelets are nearly isotropic and that they behave as an iterated Laplacian operator at low frequencies. We describe an efficient fast Fourier transform-based implementation of the discrete wavelet transform based on polyharmonic B-splines.  相似文献   

7.
The dual-tree complex wavelet transform   总被引:27,自引:0,他引:27  
The paper discusses the theory behind the dual-tree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing. The authors use the complex number symbol C in CWT to avoid confusion with the often-used acronym CWT for the (different) continuous wavelet transform. The four fundamentals, intertwined shortcomings of wavelet transform and some solutions are also discussed. Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual-tree approach.  相似文献   

8.
The objective of this paper is to present the subject of wavelets from a filter-theory perspective, which is quite familiar to electrical engineers. Such a presentation provides both physical and mathematical insights into the problem. It is shown that taking the discrete wavelet transform of a function is equivalent to filtering it by a bank of constant-Q filters, the non-overlapping bandwidths of which differ by an octave. The discrete wavelets are presented, and a recipe is provided for generating such entities. One of the goals of this tutorial is to illustrate how the wavelet decomposition is carried out, starting from the fundamentals, and how the scaling functions and wavelets are generated from the filter-theory perspective. Examples (including image compression) are presented to illustrate the class of problems for which the discrete wavelet techniques are ideally suited. It is interesting to note that it is not necessary to generate the wavelets or the scaling functions in order to implement the discrete wavelet transform. Finally, it is shown how wavelet techniques can be used to solve operator/matrix equations. It is shown that the “orthogonal-transform property” of the discrete wavelet techniques does not hold in numerical computations  相似文献   

9.
We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions—the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of ${rm L}^2({BBR})$ by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of ${rm L}^2({BBR}^2)$, we then discuss a methodology for constructing 2-D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1-D counterpart, we relate the real and imaginary components of these complex wavelets using a multidimensional extension of the HT—the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient fast Fourier transform (FFT)-based filterbank algorithm for implementing the associated complex wavelet transform.   相似文献   

10.
Recently, we have developed a new framework to study error-control coding using finite-field wavelets and filterbanks (FBs). This framework reveals a rich set of signal processing techniques that can be exploited to investigate new error correcting codes and to simplify encoding and decoding techniques for some existing ones. The paper introduces the theory of wavelet decompositions of signals in vector spaces defined over Galois fields. To avoid the limitations of the number theoretic Fourier transform, our wavelet transform relies on a basis decomposition in the time rather than the frequency domain. First, by employing a symmetric, nondegenerate canonical bilinear form, we obtain a necessary and sufficient condition that the basis functions defined over finite fields must satisfy in order to construct an orthogonal wavelet transform. Then, we present a design methodology to generate the mother wavelet and scaling function over finite fields by relating the wavelet transform to two-channel paraunitary (PU) FBs. Finally, we describe the application of this transform to the construction of error correcting codes. In particular, we give examples of double circulant codes that are generated by wavelets.  相似文献   

11.
Frequency domain volume rendering by the wavelet X-ray transform   总被引:5,自引:0,他引:5  
We describe a wavelet based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in the frequency domain. The wavelet X-ray transform is derived, and the corresponding Fourier-wavelet volume rendering algorithm (FWVR) is introduced, FWVR uses Haar or B-spline wavelets and linear or cubic spline interpolation. Various combinations are tested and compared with wavelet splatting (WS). We use medical MR and CT scan data, as well as a 3-D analytical phantom to assess the accuracy, time complexity, and memory cost of both FWVR and WS. The differences between both methods are enumerated.  相似文献   

12.
A new method using the analytic wavelet transform of the stator-current signal is proposed for detecting dynamic eccentricity in brushless direct current (BLDC) motors operating under rapidly varying speed and load conditions. As wavelets are inherently suited for nonstationary signal analysis, this method does not require the use of any windows, nor is it dependent on any assumption of local stationarity as in the case of the short-time Fourier transform. The proposed technique uses analytic wavelets, which are smooth wavelets that possess both magnitude and phase information. This makes them particularly suitable for motor-fault diagnostics. Experimental results are provided to show that the proposed method works over a wide speed range of motor operation and provides an effective and robust way of detecting rotor faults such as dynamic eccentricity in BLDC motors  相似文献   

13.
Phaselets are a set of dyadic wavelets that are related in a particular way such that the associated redundant wavelet transform is nearly shift-invariant. Framelets are a set of functions that generalize the notion of a single dyadic wavelet in the sense that dyadic dilates and translates of these functions form a frame in L/sup 2/(IR). This paper generalizes the notion of phaselets to framelets. Sets of framelets that only differ in their Fourier transform phase are constructed such that the resulting redundant wavelet transform is approximately shift invariant. Explicit constructions of phaselets are given for frames with two and three framelet generators. The results in this paper generalize the construction of Hilbert transform pairs of framelets.  相似文献   

14.
We present a new family of two-dimensional and three-dimensional orthogonal wavelets which uses quincunx sampling. The orthogonal refinement filters have a simple analytical expression in the Fourier domain as a function of the order lamda, which may be noninteger. We can also prove that they yield wavelet bases of L2(R2) for any lambda > 0. The wavelets are fractional in the sense that the approximation error at a given scale a decays like O(a(lamda)); they also essentially behave like fractional derivative operators. To make our construction practical, we propose a fast Fourier transform-based implementation that turns out to be surprisingly fast. In fact, our method is almost as efficient as the standard Mallat algorithm for separable wavelets.  相似文献   

15.
The wavelet spectrum of a random process comprises the variances of the wavelet coefficients of the process computed within each scale. This paper investigates the possibility of using the wavelet spectrum, obtained from a continuous wavelet transform (CWT), to uniquely represent the second-order statistical properties of random processes-particularly, stationary processes and long-memory nonstationary processes. As is well known, the Fourier spectrum of a stationary process is mathematically equivalent to the autocovariance function (ACF) and thus uniquely determines the second-order statistics of the process. This characterization property is shown to be possessed also by the wavelet spectrum under very mild regularity conditions that are easily satisfied by many widely used wavelets. It is also shown that under suitable regularity conditions, the characterization property remains valid for processes with stationary increments including 1/f noise  相似文献   

16.
Wavelets and filter banks: theory and design   总被引:9,自引:0,他引:9  
The wavelet transform is compared with the more classical short-time Fourier transform approach to signal analysis. Then the relations between wavelets, filter banks, and multiresolution signal processing are explored. A brief review is given of perfect reconstruction filter banks, which can be used both for computing the discrete wavelet transform, and for deriving continuous wavelet bases, provided that the filters meet a constraint known as regularity. Given a low-pass filter, necessary and sufficient conditions for the existence of a complementary high-pass filter that will permit perfect reconstruction are derived. The perfect reconstruction condition is posed as a Bezout identity, and it is shown how it is possible to find all higher-degree complementary filters based on an analogy with the theory of Diophantine equations. An alternative approach based on the theory of continued fractions is also given. These results are used to design highly regular filter banks, which generate biorthogonal continuous wavelet bases with symmetries  相似文献   

17.
On cosine-modulated wavelet orthonormal bases   总被引:1,自引:0,他引:1  
Multiplicity M, K-regular, orthonormal wavelet bases (that have implications in transform coding applications) have previously been constructed by several authors. The paper describes and parameterizes the cosine-modulated class of multiplicity M wavelet tight frames (WTFs). In these WTFs, the scaling function uniquely determines the wavelets. This is in contrast to the general multiplicity M case, where one has to, for any given application, design the scaling function and the wavelets. Several design techniques for the design of K regular cosine-modulated WTFs are described and their relative merits discussed. Wavelets in K-regular WTFs may or may not be smooth, Since coding applications use WTFs with short length scaling and wavelet vectors (since long filters produce ringing artifacts, which is undesirable in, say, image coding), many smooth designs of K regular WTFs of short lengths are presented. In some cases, analytical formulas for the scaling and wavelet vectors are also given. In many applications, smoothness of the wavelets is more important than K regularity. The authors define smoothness of filter banks and WTFs using the concept of total variation and give several useful designs based on this smoothness criterion. Optimal design of cosine-modulated WTFs for signal representation is also described. All WTFs constructed in the paper are orthonormal bases.  相似文献   

18.
The curvelet transform for image denoising   总被引:155,自引:0,他引:155  
We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a; trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.  相似文献   

19.
A new concept of the A-wavelet transform is introduced, and the representation of the Fourier transform by the A-wavelet transform is described. Such a wavelet transform uses a fully scalable modulated window but not all possible shifts. A geometrical locus of frequency-time points for the A-wavelet transform is derived, and examples are given. The locus is considered "optimal" for the Fourier transform when a signal can be recovered by using only values of its wavelet transform defined on the locus. The inverse Fourier transform is also represented by the A/sup */-wavelet transform defined on specific points in the time-frequency plane. The concept of the A-wavelet transform can be extended for representation of other unitary transforms. Such an example for the Hartley transform is described, and the reconstruction formula is given.  相似文献   

20.
A short introduction to wavelets and their applications   总被引:1,自引:0,他引:1  
This simplified introduction to wavelets starts with a short historical background. The continuous wavelet transform is presented. The multiresolution concept is concisely described. It is followed by the filter banks method for wavelet analysis and reconstruction. Wavelet packets are briefly presented. Some typical applications are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号