首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
吴诗德  易峰  平丹  张逸飞  郝健  刘国际  方少明 《化工学报》2022,73(10):4484-4497
二氧化碳(CO2)的资源化利用是实现“碳达峰,碳中和”的重要手段。在众多CO2转化技术当中,电催化CO2还原反应因反应条件温和、工艺过程简单等优点,被认为是极具应用前景的减碳技术之一,其关键在于高效、高稳定性电催化剂的开发。过渡金属-氮-碳(M-N-C)材料是电还原CO2生成CO的有效催化剂,针对其高温热解制备过程中活性金属原子容易聚集且氮原子流失严重,进而使得活性位密度降低,催化性能下降等问题,本文提出以双氰胺(DCDA)为碳源和氮源,以乙酰丙酮镍(Ni(acac)2)为金属源,以氯化铵(NH4Cl)为第二氮源和造孔剂,采用简单的NH4Cl辅助热解-酸刻蚀的方法制备得到镍-氮-碳纳米管(Ni-N-CNTs)电还原CO2催化剂,并详细考察NH4Cl添加量对催化剂结构和催化性能的影响。表征结果表明:NH4Cl的加入有利于催化剂纳米管状形貌和多级孔结构的生成,同时有利于催化剂中Ni-Nx (1.6%,摩尔分数)和pyridinic-N (1.75%,摩尔分数)物种含量的增加。一系列性能测试结果表明:催化剂的活性中心为Ni-Nx,同时pyridinic-N的存在也有利于催化性能的提高,当前体中NH4Cl加入量与氮源和金属源总质量比为1∶1时,所得Ni-N-CNTs-1催化剂催化性能最好,在电压为-0.65 V (vs RHE)时,CO法拉第效率最高达92%,此时CO部分电流密度为8 mA·cm-2。此外,该催化剂还表现出良好的催化稳定性,连续恒电位电解12 h,催化性能基本不变。该催化剂制备工艺简单,制备条件可控,研究结果可为高效M-N-C电还原CO2催化剂的设计和制备提供一种切实有效的研究思路和方法。  相似文献   

2.
过渡金属-氮共掺杂炭材料是一类高效的CO2电还原催化剂。以热解聚合物制备的氮掺杂炭材料为载体,浸渍镍源,经红外灯光照2 h,利用光化学法制备了高分散的镍-氮-碳催化剂(Ni/NC)。采用扫描电镜(SEM)、物理吸附、粉末X射线衍射(XRD)、X射线光电子能谱(XPS)等手段对催化剂的形貌、结构、物相和组成进行了分析,并评价了催化剂的CO2电还原反应性能。电化学性能测试结果表明,在0.5 mol/L的KHCO3电解液中,镍的负载量为2 %(质量分数)时催化性能最好,CO分电流密度得到有效提升,塔菲尔斜率为492 mV/dec,起始过电位为286 mV;在-0.6 V(vs.RHE)下,CO的法拉第效率为78%,在-1.0 ~-0.5 V(vs.RHE)内,n(CO)/n(H2)=0.5~3.6。  相似文献   

3.
燃料电池阴极氧还原反应(ORR)的电子转移过程比较复杂,反应动力学缓滞,需要高效的电催化剂来加快反应速率。传统的贵金属铂基催化剂价格昂贵,因此亟需开发高性能、低成本的非贵金属催化剂作为替代材料。首先通过溶胶凝胶和热处理,得到了尺寸约为10 nm的氧化铈/镍复合纳米颗粒,然后通过催化甲烷热分解,得到了碳纳米管支撑的氧化铈/镍纳米材料。由于碳纳米管的形成,使催化剂与电解液的接触面积增加,并且改变了金属镍的电子结构,从而使其在碱性溶液中表现出较好的电催化氧还原活性,其循环伏安的氧还原峰电位约在-0.17 V和-0.51 V左右,氧还原极化曲线的开启电位约在-0.05 V vs. SCE。  相似文献   

4.
过渡金属-氮共掺杂炭基催化剂广泛应用于电催化二氧化碳还原反应(CO2RR)。为解决催化剂存在的催化活性及选择性问题,以乙二胺与硝酸镍发生配位反应形成的三乙二胺合镍小分子络合物作为氮源和镍源,分别以亲水氧化石墨烯及疏水炭黑为载体,得到两类镍-氮共掺杂多孔炭基催化剂。通过X射线衍射及透射电镜等手段分析了镍物种在不同处理阶段的存在形式。CO2RR性能测试表明,同一炭载体具有不同金属负载量的催化剂经过酸洗处理除去镍纳米颗粒后,一氧化碳分电流密度得到明显提升,表明原子级分散的镍物种是CO2RR的活性位点。在-0.8 V(vs.RHE),不同催化剂的一氧化碳法拉第效率均达到90%。与亲水炭材料作为载体相比,疏水炭材料为载体制备的催化剂一氧化碳分电流密度更高,这表明疏水炭载体有利于过渡金属络合物在载体骨架中的负载与分散,进而抑制后续处理过程中活性物质的损失,从而获得高活性的镍-氮共掺杂炭基电催化剂。  相似文献   

5.
黄鑫  刘成  唐如佳  韩欣欣  陈世霞  王珺 《化工进展》2022,41(11):5887-5895
合理设计高效的电催化剂是二氧化碳电化学还原(CO2ER)为高附加值化学品和燃料的关键。本文利用水热-煅烧法制备了氮掺杂碳限域的花状SnS催化剂(SnS@NC)并研究了其电催化CO2的特性。基于超薄氮掺杂碳层的限域效应,SnS的层厚由原始的30nm缩减至20nm,电化学活性面积明显增强,同时氮掺杂碳层增强了对CO2的吸附和活化。SnS@NC催化CO2转化为甲酸的能力明显增强,在-1.3V(vs. RHE)的H型电解池中法拉第效率为81.2%,电流密度为29.5mA/cm2,本文为金属硫化物复合催化剂功能化提供了新策略。  相似文献   

6.
以乙腈为碳源,二茂铁为催化剂,用化学气相沉积(CVD)法,制备了薄壁开口定向氮掺杂的多壁碳纳米管。在780℃~860℃的生长温度范围内,随着温度的升高,碳纳米管的场发射效应增强。当生长温度为860℃时,制备碳纳米管的开启电场为0.27V/μm,阀值电场为0.49V/μm,增强因子为1.09×10^5。与其他材料相比,这种碳纳米管体现了非常优越的场发射性能。  相似文献   

7.
8.
在碳纳米管表面电沉积铂,并用抗坏血酸处理铂微粒。采用扫描电子显微镜对催化剂进行形貌表征,并用循环伏安法研究其电化学性能。结果表明:可以在减少铂用量的前提下,得到分散更均匀的铂微粒,并且制备的铂/碳纳米管催化剂对甲醇呈现出较高的电催化氧化活性。  相似文献   

9.
孔令男  李雪飞 《佛山陶瓷》2013,23(2):12-14,22
本文以三聚氰胺(C3N6H6)为原料,通过高温热分解法成功的制备了氮掺杂碳纳米管(N—CNTs)。据SEM和TEM图像显示,所制备的N—CNTs呈竹节状,并且直径和壁厚统一。利用FTIR图谱分析了N—CNTs的结构和官能团组成。同时,对N—CNTs的发光特性进行了研究,发现样品在蓝紫光范围内具有发光特性,这使得其在光学纳米器件方面具有潜在的应用价值。  相似文献   

10.
温室气体CO2是全球变暖的一个主要原因,利用太阳能将CO2还原为烃类等有机物将给环境保护和能源利用带来益处.介绍了CO2光催化还原反应中的催化剂,主要涉及TiO2、金属配合物以及一些其它金属氧化物.阐述了各类催化剂的制备过程、结构特征、光催化还原CO2反应条件以及催化剂存在的问题.通过催化剂设计,提高光催化反应活性和光...  相似文献   

11.
采用化学沉淀法制备BiVO4光催化剂并应用于光催化还原CO2/H2O体系中。通过TG-DTA、FTIR、XRD对光催化剂进行表征,研究了pH和焙烧温度等对光催化性能的影响。结果表明,pH=7并于600℃煅烧制得的单斜相BiVO4活性最高。在催化剂用量为0.6 g/L,反应时间为7 h,CO2流量为200 mL/min,反应温度为80℃,反应液中NaOH和Na2SO3的浓度均为0.10 mol/L条件下,甲醇产率高达249.18μmol/g。并对BiVO4催化剂光催化还原CO2的机理进行了探究。  相似文献   

12.
焦炉煤气是我国特有的能源和化工原料气,我国每年副产大量的焦炉气,其综合利用对于焦化企业的节能减排具有重要意义。本文综述了目前我国焦炉煤气的各种综合利用方式,包括焦炉气制甲醇、发电、制天然气等。结合焦化企业现场调研采样分析了焦炉气的典型组成、缺省碳含量及燃烧利用碳氧化因子。结果表明我国焦炉气的缺省碳含量明显低于政府间气候变化专业委员会(IPCC)的缺省值,焦炉气燃烧利用的碳氧化因子为1。同时分析了焦炉气综合利用对CO_2减排的贡献及潜力,指出我国富余焦炉煤气的综合利用,尤其是制化学品等对于节能减排潜力巨大。  相似文献   

13.
The electrochemical conversion of CO2-H2O into CO-H2 using renewable energy is a promising technique for clean syngas production. Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H2 ratio are highly desired. Herein, a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles (MxNi-NCNT, M= Fe, Co) were successfully fabricated through the co-pyrolysis of melamine and metal precursors. The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization. Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles. Consequently, syngas with a wide range of CO/H2 ratios, from 0.5:1 to 3.4:1, can be produced on MxNi-NCNT. More importantly, stable CO/H2 ratios of 2:1 and 1.5:1, corresponding to the ratio to produce biofuels by syngas fermentation, could be realized on Co1Ni-NCNT and Co2Ni-NCNT, respectively, over a potential window of –0.8 to –1.2 V versus the reversible hydrogen electrode. Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H2 ratio from electrochemical CO2 reduction.  相似文献   

14.
采用水热法制备了颗粒状单斜相钒酸铋(BiVO4)/还原氧化石墨烯(rGO)复合催化剂。采用傅里叶红外光谱、拉曼光谱、X射线衍射和紫外-可见漫反射光谱对合成的复合材料做了表征。采用透射电镜、扫描电镜和氮吸附脱附实验对复合材料的表面形貌和表面积做了分析测试。实验结果表明,BiVO4复合物能选择性将CO2还原成甲醇,石墨烯的引入能很好地改善BiVO4光催化还原CO2的性能。当石墨烯的加入量为3%(质量分数)时,在氙灯功率为600 W的条件下,光照6 h后,BiVO4/rGO复合材料光催化还原CO2生成的甲醇产量达到513.1 μmol/L,比相同形貌的纯BiVO4的甲醇产量高73.6%。  相似文献   

15.
The development of CO2 into hydrocarbon fuels has emerged as a green method that could help mitigate global warning. The novel structured photocatalyst is a promising material for use in a photocatalytic and magneto-electrochemical method that fosters the reduction of CO2 by suppressing the recombination of electron−hole pairs and effectively transferring the electrons to the surface for the chemical reaction of CO2 reduction. In our study, we have developed a novel-structured AgCuZnS2–graphene–TiO2 to analyze its catalytic activity toward the selective evolution of CO2. The selectivity of each nanocomposite substantially enhanced the activity of the AgCuZnS2–graphene–TiO2 ternary nanocomposite due to the successful interaction, and the selectivity of the final product was improved to a value 3 times higher than that of the pure AgCuZnS2 and 2 times higher than those of AgCuZnS2–graphene and AgCuZnS2–TiO2 under ultra-violet (UV)-light (λ = 254 nm) irradiation in the photocatalytic process. The electrochemical CO2 reduction test was also conducted to analyze the efficacy of the AgCuZnS2–graphene–TiO2 when used as a working electrode in laboratory electrochemical cells. The electrochemical process was conducted under different experimental conditions, such as various scan rates (mV·s–1), under UV-light and with a 0.07 T magnetic-core. The evolution of CO2 substantially improved under UV-light (λ = 254 nm) and with 0.07 T magnetic-core treatment; these improvements were attributed to the facts that the UV-light activated the electron-transfer pathway and the magnetic core controlled the pathway of electron-transmission/prevention to protect it from chaotic electron movement. Among all tested nanocomposites, AgCuZnS2–graphene–TiO2 absorbed the CO2 most strongly and showed the best ability to transfer the electron to reduce the CO2 to methanol. We believe that our newly-modeled ternary nanocomposite opens up new opportunities for the evolution of CO2 to methanol through an electrochemical and photocatalytic process.  相似文献   

16.
固定床选择性加氢反应一般要求催化剂具有良好的机械强度、较适宜的比表面积和孔容、活性组分高度分散等。为克服钯/碳纳米管(Pd/CNTs)催化剂成型性和强度不足的问题,将自产CNTs提纯后与氧化铝制成复合载体(CNTs-Al2O3)。表征结果显示,复合载体中CNTs与氧化铝混合均匀,CNTs保留了原有的管状结构,碳管的端口呈打开状态。对比实验结果表明,添加5%~10%CNTs(以质量分数计)的复合载体比单纯氧化铝载体负载乙酸钯后制成的催化剂活性更强。与盐酸和乙酸相比,以有机酸柠檬酸和乙二胺四乙酸作为钯的酸性络合剂时,更能减少载体比表面积和孔容的损失,活性组分在载体表面的分散性更好。在优选出的催化剂体系下,当反应温度取90~110 ℃、氢气压力取1.2~1.6 MPa条件时,可以获得更高的目标产物选择性和收率。  相似文献   

17.
分析了目前CO2减排的压力和趋势,以电化学催化还原为技术核心,结合燃煤排放特点,对电化学体系进行了优选,提出限碳背景下燃煤电厂的减排策略。在缓解日益严峻的CO2减排和温室效应问题的同时,将大体量废弃的CO2转化为具有利用价值的产品是碳捕集与利用的必由之路。对CO2电化学催化还原技术的过程原理进行简要阐述,围绕电极、电解质、CO2溶解性、反应器形式进行讨论,结合电化学催化还原技术特点和燃煤电厂结构特征,对大体量、低浓度CO2电化学催化还原条件进行筛选,确定了以Cu基气体扩散电极-离子液体-连续式反应器为核心的基本电化学体系,进而提出燃煤电厂烟气中CO2电化学催化还原对策,但在向实际应用转化过程中该技术仍面临非理想气源中杂质的影响、还原电流密度低引发的产物生成速率慢、电极寿命短、产物多样性伴随的分离及提纯难度大等障碍,为面向应用的技术发展指明了研究方向。  相似文献   

18.
为了降低钢铁企业炼焦生产CO2排放量,应用物质流分析法,建立炼焦生产CO2排放计算模型,以某钢铁联合企业的实际炼焦生产为基础,进行含碳材料取样和检测,定量分析炼焦生产中各碳源和碳汇对CO2排放的影响。研究表明,该钢铁企业65孔和36孔焦炉,吨焦炭生产所需炼焦煤分别涉及986.76和984.87 kg碳元素的转化,其中,80.40%和80.65%的碳元素转移至焦炭,即碳元素有效利用率为80.40%和80.65%,剩余19.60%和19.35%的碳元素转移到其他产物中。炼焦生产潜在存在大量CO2排放;增大炭化室容量可减少炼焦生产CO2排放,采用焦炉煤气回收、粗苯和煤焦油回收、干熄焦和煤调湿技术可降低炼焦生产CO2排放量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号