共查询到17条相似文献,搜索用时 78 毫秒
1.
中国散裂中子源(CSNS)是基于强流质子加速器的大科学装置,通过高功率质子束流轰击重金属靶产生高通量中子用于开展中子散射研究,CSNS是世界上第四台、发展中国家第一台脉冲型散裂中子源。CSNS包括高功率强流质子加速器、中子靶站和中子谱仪以及相应的配套设施等。加速器由80 MeV负氢直线加速器、1.6 GeV快循环同步加速器及相应的束流输运线组成。CSNS加速器是我国第一台中高能强流高功率质子加速器,本文将介绍CSNS加速器的设计、关键技术、设备研制以及束流调试过程和其中关键问题。 相似文献
2.
注入系统是中国散裂中子源(CSNS)加速器的核心组成部分,对束流功率提升和稳定供束运行具有重要意义。注入束流损失是快循环同步加速器(RCS)能否在高功率下运行的决定因素之一。本文首先研究CSNS加速器注入束流损失的主要来源,包括注入参数不匹配、注入方式选择、剥离膜散射粒子损失、未被剥离的粒子损失等。其次,根据加速器的束流调节进程,对不同来源的束流损失进行调节和优化,降低注入束流损失,提高注入效率。最后,总结注入束流损失调节结果,初步测量得到注入效率约99%,并对进一步降低注入束流损失、提高注入效率提出改进方法和意见。 相似文献
3.
目前中国散裂中子源(China Spallation Neutron Source,简称CSNS)正在进行预研设计.其中的质子加速器是其重要的组成部分.此电子学系统负责取出质子加速器中DTL (Drift Tube Linac)内的束流信号,测试其相位和能量信息,进而反馈给系统以便对束流进行调制.由于处理的信号为经调制的高速脉冲信号(重复频率为352.2MHz,前沿几百ps),幅度较小且动态范围大(20mV~900mVpeak to peak),因此需要通过采用一定的技术来获取高频脉冲信号的相位信息.为验证其中相位测试的基本原理并评估其性能,我们在mtlab下进行了相关的仿真. 相似文献
4.
5.
6.
7.
中国散裂中子源(CSNS)靶体选用钨为靶材、钽为包覆层,采用包套法结合热等静压扩散焊工艺制备了钽包覆钨靶片。经检测,钨钽界面结合良好,钽层与钨基体平均结合强度大于64.07 MPa。靶体将钨靶片分成厚度不等的11片,散热采用一进一出的并行流结构,利用CFD软件进行了模拟计算,钨靶片间冷却流道间隙为1.2 mm,100 kW满功率运行情况下靶体最高温度为182.3 ℃,冷却水温升为7.1 ℃。经过半年多的试运行,CSNS靶体各参数满足CSNS的要求。 相似文献
8.
束团长度是中国散裂中子源(CSNS)快循环同步加速器(RCS)束流动力学的关键参数,通过对束团长度的研究,可了解RCS的机器性能并进一步指导机器优化研究。本文对RCS 100 kW时的束团长度进行精确测量,100 kW引出时的束团长度为105 ns。RCS 500 kW时束团长度可能超过无损引出允许值,需压缩束团长度。理论上提高腔压可压缩束团长度,本文模拟研究500 kW时束团长度随腔压曲线的变化规律,模拟结果表明提高加速后半阶段的腔压可压缩束团长度,给出了500 kW时无束流损失引出的腔压曲线。基于100 kW束流条件实验验证了通过提高加速后半阶段腔压来压缩束团长度的有效性和可行性,实验测量结果与模拟结果一致。因此,提高加速后半阶段腔压是500 kW时无损引出束流的有效方法。 相似文献
9.
束团长度是中国散裂中子源(CSNS)快循环同步加速器(RCS)束流动力学的关键参数,通过对束团长度的研究,可了解RCS的机器性能并进一步指导机器优化研究。本文对RCS 100 kW时的束团长度进行精确测量,100 kW引出时的束团长度为105 ns。RCS 500 kW时束团长度可能超过无损引出允许值,需压缩束团长度。理论上提高腔压可压缩束团长度,本文模拟研究500 kW时束团长度随腔压曲线的变化规律,模拟结果表明提高加速后半阶段的腔压可压缩束团长度,给出了500 kW时无束流损失引出的腔压曲线。基于100 kW束流条件实验验证了通过提高加速后半阶段腔压来压缩束团长度的有效性和可行性,实验测量结果与模拟结果一致。因此,提高加速后半阶段腔压是500 kW时无损引出束流的有效方法。 相似文献
10.
11.
12.
13.
高流强RFQ质子加速器研制 总被引:1,自引:0,他引:1
在国家“973”计划洁净核能项目的支持下,中国科学院高能物理研究所与中国原子能科学研究院合作,建成了我国首台强流质子加速器。它是1台四翼型结构的射频四极(radio-frequencyqaudrupole,RFQ)加速器,这种先进加速结构可为来自离子源的低能强流束提供周期性强聚焦,并同时在纵向对束流进行聚束和加速。我国建成的这台RFQ加速器束流能量为3.5MeV,脉冲流强达46mA,束流工作比大于7%。本文将介绍这台RFQ加速器的物理设计、研制、调试和出束实验的结果。 相似文献
14.
本文研制了中国散裂中子源(CSNS)直线加速器高功率自动老炼平台,该平台集成了驻波比保护、真空检测、弧光打火探测器、腔体谐振频率计算和变频等功能,可根据腔体的打火情况自适应调节功率进行腔体老炼,通过软件界面对相关参数进行修改即可适应不同腔体的需求。该平台具有高安全性、高智能化、灵活性强的特点,其已在CSNS直线加速器8套功率源系统上使用,在保证腔体和功率源安全的前提下,大幅提高了老炼效率和降低值班人员的劳动量。 相似文献
15.
中国散裂中子源(CSNS)的离子源是1台强流负氢离子源,该离子源负氢束流的能量为50 keV,负氢流强可达40 mA,束流占空比最高为1.25%(重复频率为25 Hz,脉宽为500 μs)。目前该负氢离子源已投入到CSNS中使用。由于等离子体放电电极受带电粒子溅射的缘故,在1.5%(25 Hz,600 μs)的占空比、负氢流强30 mA运行下,离子源的寿命约为30 d。为提高离子源使用的稳定性,对离子源进行改进优化,提高了离子源的运行效率和稳定性。 相似文献
16.
微型反应堆(简称“微堆”)低浓化及退役都包含乏燃料卸出的操作,而保证乏燃料安全卸出的关键设备之一就是卸料装置。现有的卸料装置在操作过程中会破坏微堆堆筒体密封性,并且无法恢复,但微堆低浓化后还需利用原有堆筒体进行装料运行,所以本文在此需求的基础上设计了一套新型的卸料装置,可在不分离筒节、不破坏筒体完整性及密封性的前提下完成卸料操作。新设计的卸料装置包含卸料操作工具和辅助机械装置两部分。卸料操作工具通过小盖开口即可实现燃料组件的抓取,实施吊装。卸出的微堆乏燃料具有很高的放射性,卸料操作工具配合辅助机械装置,可实现远距离起升平移的操作,这种设计便于屏蔽,同时可有效降低工作人员所受辐射剂量。对该卸料装置进行计算和可靠性分析,结果表明其强度远大于实际使用载荷,安全可靠,能较好地满足微堆使用需求。新型微堆卸料装置具有经济性好、易制备、易操作的特点,下一步将在国内外微堆低浓化卸料或退役中推广应用。 相似文献