首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
络合萃取法处理6-硝基间甲酚废水   总被引:1,自引:0,他引:1  
采用络合萃取法处理6-硝基间甲酚废水,一次萃取率达到99.9%,最佳的萃取条件为V(络合剂)∶V(稀释剂)=1∶2,萃取油水体积比为1∶2,溶液pH值低于3。萃取剂可经过反萃再生其效率不变。  相似文献   

2.
以三辛胺为萃取剂,分别用正辛醇、二氯甲烷、乙酸乙酯、4-甲基-2-戊酮、正己烷、环己烷为稀释剂对3-羟基丙酸稀溶液进行络合萃取,分析了稀释剂对萃取的影响,讨论了温度、溶液p H、相比及络合剂体积分数对络合萃取相平衡分配系数的影响,利用傅立叶红外光谱仪测定了负载有机相中萃合物的结构,对三辛胺络合萃取3-羟基丙酸的机理进行了探讨.结果表明,正辛醇作稀释剂萃取效果最好,平衡分配系数高达4.46.以Na OH溶液进行反萃,3-羟基丙酸的反萃率为99.6%.  相似文献   

3.
利用络合萃取法回收废液中的6-APA,考察了稀释剂种类、络合剂浓度、p H、相比等对萃取效果的影响。结果表明,在0.117 5 mol/L甲基三辛基氯化铵氯仿溶液为混合萃取剂,水相p H=6,萃取剂与水相体积比为0.4时,6-APA的萃取率最高可达56.96%。对反萃过程的研究表明,使用p H=1的盐酸反萃液,反萃相与萃取相体积比为0.4时,反萃率最高可达51.42%。三级萃取和反萃取后,总的萃取和反萃率可达95%以上,络合剂可循环再生使用7次以上而不影响萃取和反萃效果,大大降低了操作成本。经络合萃取处理后的废液中6-APA质量分数大大降低,实现了经济和环保效益的双赢。  相似文献   

4.
以三辛胺为络合剂,正辛醇为稀释剂,通过络合萃取-反萃取的方式,回收高浓度苯酚废水中的苯酚。利用响应曲面法研究了络合剂浓度、油水比、废水的p H值对萃取效率的影响。结果表明:以体积浓度为33.8%的三辛胺为络合剂,正辛醇为稀释剂,油水比为0.28,p H值为4.69,苯酚络合萃取率可以达到99.82%,此时萃余水相中苯酚的浓度为36 mg/L,完全可以实现苯酚的回收再利用。  相似文献   

5.
用络合萃取法分离极性有机稀溶液 ,具有高效性和高选择性。利用磷酸三丁酯 (TBP)为络合剂 ,分别采用甲苯、异丙基甲酮、正辛醇、煤油作为稀释剂萃取丁酸稀溶液 ,系统研究了不同稀释剂对络合萃取平衡的影响 ,最终从效能、毒性、价格等综合因素考虑 ,选用正辛醇作为稀释剂 ;分析了络合剂浓度、丁酸溶液初始浓度、溶液 pH值以及温度对络合萃取相平衡分配系数的影响 ;利用红外光谱测定了负载有机相中萃合物的结构 ;并进行了有机溶剂的再生研究  相似文献   

6.
采用三正辛胺(TOA)作为络合剂,异辛醇和煤油分别作为助溶剂和稀释剂,对生物油中的乙酸进行了络合萃取研究。考察了TOA体积分数、异辛醇浓度、萃取剂与生物油轻馏分体积比以及温度对乙酸萃取率的影响,结果表明:温度为0 ℃,萃取体系为40%TOA+40%异辛醇+20%煤油(各组分浓度均为体积分数,下同),萃取剂与生物油轻馏分体积比为3∶1时,乙酸的一次萃取率较高,可达74.6%。  相似文献   

7.
萃取法分离提取深层富钾卤水中的硼   总被引:1,自引:0,他引:1  
采用溶剂萃取法分离提取江陵凹陷深层富钾卤水中的硼,研究了萃取剂种类、体积分数、萃取时间、萃取相比、反萃剂体积分数、反萃相比和反萃时间等因素对萃取和反萃取的影响。结果表明:2-乙基-1,3-己二醇是较合适的硼萃取剂;在以体积分数为15%的2-乙基-1,3-己二醇、35%异辛醇的混合醇为萃取剂,50%磺化煤油为稀释剂,萃取相比为1∶1,萃取时间为15min的条件下,硼单级萃取率达95%以上,实现了硼与卤水中钾、钠、钙和镁的有效分离;在反萃剂NaOH浓度为0.625mol/L,反萃相比为2.5∶1,反萃时间为15min的条件下,硼单级反萃率达94%;最优的反萃取条件在确保反萃率较高的同时,提高了反萃液中B2O3质量浓度,由原料的8.33g/L富集到反萃液的19.10g/L,有助于后续硼酸蒸发浓缩阶段能耗的降低。  相似文献   

8.
以磷酸三丁酯 (TBP)、三烷基胺 (73 0 1)为络合剂 ,分别采用甲苯、异丙基甲酮、正辛醇、煤油作为稀释剂对丁二酸稀溶液进行络合萃取。结果表明 :混合型络合剂对丁二酸稀溶液进行萃取 ,可取得满意的分离效果 ,平衡分配系数D高达 15 .2 8;讨论了丁二酸溶液初始浓度、溶液pH值以及温度对络合萃取相平衡分配系数的影响。利用傅立叶红外光谱仪测定了负载有机相中萃合物的结构 ,对三烷基胺络合萃取丁二酸稀溶液的机理进行了探讨  相似文献   

9.
采用络合萃取法处理高浓度H酸废水,考察了萃取体系、萃取时间、萃取级数、萃取剂体积分数、相比(A/O)、油碱比对COD的去除效果的影响。最佳体系为:三辛胺为络合剂,煤油为稀释剂,正辛醇为助溶剂。以三辛胺/煤油/正辛醇体系进行萃取实验,得到最优工艺参数为:V(三辛胺)/V(煤油)=1/4,相比(A/O)=5/1,pH=2.3,萃取时间为30 min;当H酸初始COD为35 000 mg/L时,经两级错流萃取后COD去除率可达到83.4%。采用12.5%的Na OH溶液对萃取相进行反萃取,可回收并循环利用萃取剂。实验结果表明:络合萃取工艺处理H酸生产废水效果显著,达到了预处理的目的,有利于实现工业化生产。  相似文献   

10.
以异辛醇为萃取剂,磺化煤油为稀释剂,从萃取剂体积分数、卤水pH值、相比、萃取时间、饱和萃取容量、反萃液pH值、反萃时间等方面考察了异辛醇对油田卤水中硼萃取的影响.结果表明:在卤水pH值为2、异辛醇体积分数为30%、相比(O/A)为1∶1、萃取时间为10 min时,通过4级萃取,硼的萃取率为95.3%;在相比为1∶l、反萃时间为10 min时用燕馏水3级反萃负载有机相,囊的反萃率达99%;整个过程穗的总回收率为94.3%.  相似文献   

11.
混合醇萃取剂从浓缩盐湖卤水中萃取提硼的实验研究   总被引:1,自引:0,他引:1  
以2-乙基-1,3-己二醇和异丁醇按照一定体积比组成混合萃取剂、航空煤油为稀释剂,萃取某硫酸盐型盐湖浓缩卤水中的硼。对萃取剂浓度、浓缩卤水pH、萃取相比、萃取温度、萃取时间、饱和萃取容量和反萃剂浓度、反萃相比等进行了实验研究。结果表明:2-乙基-1,3-己二醇、异丁醇和航空煤油体积比为1∶2∶3,卤水pH为3,萃取相比为1∶1,温度为20℃,萃取时间为5 min;将得到的富硼有机相用0.25 mol/L氢氧化钠溶液进行反萃,反萃相比为1∶2、温度为30℃、反萃取时间为15 min。经三级萃取及反萃,卤水中硼质量浓度降为0.8 mg/L,硼萃取率为99.99%,反萃率为99.78%,硼回收率为99.77%,萃取效果好。  相似文献   

12.
D2EHPA萃取回收Cr(Ⅲ)的研究   总被引:1,自引:0,他引:1  
以回收废水中Cr(Ⅲ)为目的,选择2-乙基己基磷酸(D2EHPA)为萃取剂,煤油为稀释剂,进行了萃取回收Cr(Ⅲ)的实验研究.考察了皂化剂种类、溶液pH值、助溶剂种类、萃取剂浓度等因素对于萃取平衡影响以及三种无机酸、两种有机酸对于负载Cr(Ⅲ)的D2EHPA反萃效果的影响.结果表明,pH值是影响D2EHPA/煤油萃取Cr(Ⅲ)的重要因素, 在pH<2时,D2EHPA几乎不萃取Cr(Ⅲ),通过萃取剂的皂化,提高水相pH值,可以实现D2EHPA萃取Cr(Ⅲ).随平衡水相pH值的升高,D2EHPA显示出良好的萃取效果.NaOH溶液作为皂化剂比氨水的分相效果好.加入助溶剂后萃取效率提高,其中10%~20%正辛醇是适宜的助溶剂选择.D2EHPA/正辛醇/煤油萃取Cr(Ⅲ)后立即用无机酸或有机酸反萃,其中硫酸、盐酸或草酸的反萃率能够达到90%以上.  相似文献   

13.
为了获得高脱酚率的络合萃取剂,以三辛胺为络合剂,研究稀释剂种类对萃取脱酚效果的影响,确定最佳络合萃取剂;考察了剂/水比、萃取级数、p H值、温度条件对萃取效果的影响,确定最佳的萃取条件。探讨络合萃取的缔合机理来指导萃取实验。结果表明:选择30%三辛胺-煤油为萃取剂,p H≤7,剂/水比≥1∶4,温度为≤25℃,经4级错流萃取后萃取率稳定在94%以上;三辛胺萃取属放热反应,缔合方式为氢键缔合和离子缔合2种,三辛胺与酚的萃合比为1∶1,生成的络合物为Ph OH(R3NH+)或Ph OH·NR3。  相似文献   

14.
辛胜  安黛宗 《河北化工》2009,32(11):6-8,20
采用M5640-磺化煤油作为萃取剂,H2SO4为反萃剂,对电镀污泥浸出液中的铜进行选择性萃取实验,确定了萃取铜及反萃的最佳工艺参数。结果表明,实验采用二级萃取,萃取剂浓度为5%,VO/VA=1:1,混合时间为2min时,铜的萃取率可达到9996以上,另外采用已优化的反萃工艺参数,铜的反萃率可达99%以上。同时,萃取剂对Ni、Zn的共萃率较低,表明M5640-磺化煤油体系对电镀污泥液中铜的萃取选择能力较高,可以达到与溶液中Ni、Zn有较好的分离效果。  相似文献   

15.
首先通过臭氧氧化作用把钛白废酸中的二价铁转化成三价铁,然后采用萃取法去除其中的三价铁。考察了络合剂(盐酸)浓度、萃取剂、萃取相比等对三价铁萃取率的影响,并初步探索了反萃法回收萃取剂及萃取剂的循环利用。结果表明:当盐酸浓度为3.4 mol/L时,几乎可完全络合溶液中的三价铁;在萃取剂磷酸三丁酯中加入苯作为稀释剂,可有效降低磷酸三丁酯的粘度,消除萃取过程中的乳化现象;磷酸三丁酯萃取三价铁的传质过程很快,2-3 min即达平衡;当萃取相比O/W(萃取剂与钛白废酸体积之比)=0.6∶1时,三价铁萃取率可达97%以上。当反萃相比W/O=4∶1时,三价铁反萃率接近100%。磷酸三丁酯经过5次萃取-反萃循环后,三价铁的萃取率没有明显下降。去除三价铁后的钛白废酸,经蒸馏浓缩到质量分数70%左右,再与浓硫酸混合后可用于钛白粉的生产,蒸馏过程中回收的盐酸循环使用。反萃出来的三价铁可作为生产铁红的原料。  相似文献   

16.
以青海某地油田卤水为原料,考察异辛醇—磺化煤油体系对硼的萃取效果。结果表明:原卤水在异辛醇体积分数为50%、相比(O/W)=2∶1、时间为2min的条件下经4级萃取,萃取率达92.24%;以蒸馏水为反萃剂,在相比(O/W)=2∶1、时间为5min的条件下经2级反萃,反萃率达98.45%。整个过程硼的回收率为90.81%。  相似文献   

17.
袁飞刚 《化工进展》2019,38(10):4437-4443
二(2-乙基己基)磷酸(P204)常作为溶液净化除铁的萃取剂,P204-磺化煤油体系中Fe3+与有机相形成络合能力较强的萃合物,使得Fe3+反萃比较困难,需采用较高浓度的酸作为反萃剂,但高浓度的酸会破坏有机分子的结构,影响萃取剂循环利用。针对P204-磺化煤油负铁有机相反萃困难的问题,提出利用草酸为反萃剂对负载1g/L铁的P204-磺化煤油有机相的反萃行为进行研究,考察了反萃转速、草酸浓度、反萃温度、反萃时间和相比对Fe3+反萃率的影响。结果表明:以反萃转速200r/min,草酸0.4mol/L,反萃时间10min,反萃温度40℃,反萃相比1∶1,采用二级逆流萃取方式,铁的反萃率可以达到99%以上;Fe3+反萃过程是吸热反应,其反应的焓变为81.58kJ/mol,反萃过程符合准一级反应动力学方程,对应活化能为49.5kJ/mol。进一步研究了反萃后P204-磺化煤油有机相对Fe3+的萃取性能。结果表明:经5次草酸反萃后的P204-磺化煤油有机相萃铁性能几乎不变,对比于高浓度的酸反萃,草酸反萃简化了反萃流程,降低了萃取剂的消耗。  相似文献   

18.
该研究以磷矿伴生钼镍钒多金属矿中钒的萃余液作为研究对象,研究了P507对该多金属矿钒萃余液体系中镍的萃取工艺,确定了镍的最佳萃取工艺参数。萃取镍的条件为:采用30%P507+70%磺化煤油,萃取p H值为6.0,相比1∶2,萃取时间3 min,萃取级数3级,反应温度常温,上述条件下镍的萃取率可达98.76%;反萃剂2 mol/L盐酸溶液,反萃相比3∶1反萃时间3 min,反应温度常温,上述条件下镍的反萃率可达99.45%。  相似文献   

19.
以三辛胺(TOA)与正辛醇、磺化煤油组成萃取剂,萃取回收硫氰酸红霉素废水中的硫氰酸盐。结果表明:TOA与硫氰酸(HSCN)的萃合物在正辛醇、异辛醇、正己醇等极性溶剂中的溶解度比在煤油、环己烷及其本身中的溶解度大;在p H值为3.50和4.00时,TOA-正辛醇-煤油体系中,正辛醇起助溶和协萃双重作用,而在p H值为3.00时,正辛醇的助溶作用较为突出;以TOA-正辛醇-煤油为萃取剂萃取废水中HSCN,研究得到最佳萃取条件为:萃取剂组成V(TOA)∶V(正辛醇)∶V(煤油)=2∶1∶17,在室温下进行萃取,初始p H值约为3.50,油水相比VO/VA为1/10,萃取级数2级,在最佳萃取条件下,SCN-的萃取率可达到94.52%;且该萃取过程为放热、熵减过程,萃取焓变-39.25 k J/mol,熵变-103.78(J·mol)/K。  相似文献   

20.
为对芳香族磺酸类化合物生产废水进行预处理,本文对生产废水中常见的芳香族磺酸类化合物进行了络合萃取研究,考察了络合剂结构、稀释剂种类、溶液pH以及络合剂用量对萃取效果的影响。结果表明,三正辛胺和磺化煤油是较佳的络合剂和稀释剂;磺酸类化合物被萃取的难易程度主要取决于其芳香环上是否有氨基取代以及芳香环疏水性的强弱,疏水性越强,萃取率越高,而氨基则会降低萃取率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号