首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周鸿伟  邓华  孙桐海 《建筑结构学报》2022,43(8):248-255+302
空间网格结构在强震下出现薄弱区的原因是该区域杆件的地震内力与决定其截面配置的非抗震设计内力差异较大,且该内力差异主要来自于少数模态的贡献。为此,利用非抗震设计和多遇地震验算的最不利内力,提出了一种疑似薄弱区杆件的简便判别方法。基于多遇地震下由振型分解反应谱法计算得到的结构响应,可以确定疑似薄弱区杆件地震内力的主要贡献模态。考虑这些主要贡献模态并参考振型质量参与系数,构造了能够近似反映最不利单向地震响应的综合模态,并基于结构应变能相等的原则确定了罕遇地震水平的等效静力推覆荷载。给出了一种能够计入三向地震动贡献的静力推覆方法,并对一个三心圆柱面双层网壳算例进行了推覆分析。通过与动力弹塑性时程分析结果对比发现,只要在建立推覆荷载时组合模态包括了疑似薄弱区杆件地震内力的主要贡献模态,并且所有组合模态的振型质量参与系数之和大于90%,则该静力推覆方法可以有效识别到该结构在罕遇地震下可能形成的薄弱区。  相似文献   

2.
According to the previous researches, conventional nonlinear static procedure (NSP), which is limited to single mode response, cannot predict the seismic demands of tall buildings with reliable accuracy. To estimate the seismic demands in upper stories for tall buildings the effects of higher modes should be included. In the recent years, developing traditional pushover analysis to consider the effects of higher modes conducted researchers to propose several methods, such as N2, MPA and MMPA procedures, that have a specific approach to estimate seismic demands of structures but the accuracy of them is doubtable for estimating of hinge plastic rotations. Recently consecutive modal pushover (CMP) procedure was proposed to consider the effects of higher modes with acceptable accuracy especially in prediction of hinge plastic rotations. The CMP procedure was limited to include two or three modes, and use of higher modes might cause some inaccuracy at results of upper stories. In CMP procedure, estimation of modal participating factors is important and choosing inadequate modes may cause large errors. In this paper some changes have been applied to the CMP procedure to improve accuracy of the results and the modified method is proposed and named modified consecutive modal pushover (MCMP) procedure. In this modified method the contribution of mode is used of effective modal participating mass ratio. The comparison of MCMP procedure to exact values derived by nonlinear response history analysis (NL-RHA) demonstrated the reliable predictions and it can overcome the limitations of traditional pushover analysis.  相似文献   

3.
Conventional pushover analyses despite of extensive applications are unable to estimate the general responses of asymmetric‐plan tall buildings because of ignoring the effects of higher modes and torsion. A consecutive modal pushover procedure is one of the recent nonlinear static pushover procedures that used to analyse the seismic response of one‐way asymmetric‐plan tall buildings under one‐directional seismic ground motions. In this paper, a modified consecutive modal pushover procedure (MCMP) has been proposed to estimate the seismic demands of two‐way asymmetric‐plan tall buildings under two horizontal components of earthquakes simultaneously. The accuracy of the MCMP procedure is evaluated using different buildings and comparing with the results of FEMA (Federal Emergency Management Agency) procedures, the practical modal pushover procedure and nonlinear time history analyses as an exact solution. The results show the proposed MCMP procedure is able to estimate the displacements and storey drifts accurately and introduces a great improvement in predicting the plastic hinge rotations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
针对高层结构罕遇地震作用下局部集中损伤破坏易导致整体倒塌的问题,及超静定次数消耗集中且不充分的结构地震失效本质,确定了高层结构耗能构件分批次充分消耗超静定次数的多阶段塑性发展路径,提出了高层结构塑性发展充分、失效方向可控、失效路径延长的渐进地震失效模式。同时,考虑结构多阶段塑性发展过程中地震作用的往复特性、高阶振型影响和非线性内力重分布特点,建立基于多阶段振型组合的标准地震作用,给出了多阶段塑性发展的抗震性能量化需求,建立了基于渐进地震失效模式的高层结构抗罕遇地震设计方法。该方法将高层结构渐进地震失效全过程的复杂设计简化为有限塑性阶段的分段抗罕遇地震设计,解决了高层结构难于抗罕遇地震量化设计的难题。为验证该设计方法的有效性,对一幢10层高层结构进行了抗罕遇地震设计,通过非线性时程分析方法验证了按所提方法设计的结构能够实现结构渐进地震失效模式以及结构抗震性能目标,并对比分析了按所提方法设计的结构与按现行规范方法设计的结构的抗震性能,得到按所提方法设计的结构在地震动峰值加速度为0.22g作用下耗能提高了57%,在非线性静力推覆作用下非线性抗力(基底剪力)最大值提高了15.59%。  相似文献   

5.
针对高层结构罕遇地震作用下局部集中损伤破坏易导致整体倒塌的问题,及超静定次数消耗集中且不充分的结构地震失效本质,确定了高层结构耗能构件分批次充分消耗超静定次数的多阶段塑性发展路径,提出了高层结构塑性发展充分、失效方向可控、失效路径延长的渐进地震失效模式。同时,考虑结构多阶段塑性发展过程中地震作用的往复特性、高阶振型影响和非线性内力重分布特点,建立基于多阶段振型组合的标准地震作用,给出了多阶段塑性发展的抗震性能量化需求,建立了基于渐进地震失效模式的高层结构抗罕遇地震设计方法。该方法将高层结构渐进地震失效全过程的复杂设计简化为有限塑性阶段的分段抗罕遇地震设计,解决了高层结构难于抗罕遇地震量化设计的难题。为验证该设计方法的有效性,对一幢10层高层结构进行了抗罕遇地震设计,通过非线性时程分析方法验证了按所提方法设计的结构能够实现结构渐进地震失效模式以及结构抗震性能目标,并对比分析了按所提方法设计的结构与按现行规范方法设计的结构的抗震性能,得到按所提方法设计的结构在地震动峰值加速度为0.22g作用下耗能提高了57%,在非线性静力推覆作用下非线性抗力(基底剪力)最大值提高了15.59%。  相似文献   

6.
Abstract:   An essential requisite in performance-based seismic design is the estimation of inelastic deformation demands in structural members. An increasingly popular analytical method to establish these demand values is a "pushover" analysis in which a model of the building structure is subjected to an invariant distribution of lateral forces. Although such an approach takes into consideration the redistribution of forces following yielding of sections, it does not incorporate the effects of varying dynamic characteristics during the inelastic response. Simple modal combination schemes are investigated in this article to indirectly account for higher mode effects. Because the modes that contribute to deformations may be different from the modes that contribute to forces, it is necessary to identify unique modal combinations that provide reliable estimates of both force and deformation demands. The proposed procedure is applied to typical moment frame buildings to assess the effectiveness of the methodology. It is shown that the envelope of demands obtained from a series of nonlinear static analysis using the proposed modal-combination-based lateral load patterns results in better estimation of inter-story drift, a critical parameter in seismic evaluation and design.  相似文献   

7.
Pushover methods for seismic assessment of buildings under multidimensional earthquakes have been studied and retrofitted. However, these current methods are not suitable when applied to widely adopted arch‐type structures characterized by strong geometrical nonlinearity and coupling effects. An improved multidimensional modal pushover procedure with two‐stage analyses is proposed for seismic evaluation of latticed arches. Taking overall multidimensional response into consideration, modal stiffness of the equivalent single‐degree‐of‐freedom system is derived, and its capacity curve is determined during the first‐stage analysis. To provide a deformation profile with algebraic signs of response retained, the second‐stage analysis is conducted using the pushover load pattern derived from modal displacement superposition. The objective of the improved procedure is to overcome the drawback of the conventional modal pushover method, which describes the capacity curve resorting to base shear and roof displacement, and that of quadratic combination rules which eliminate the sign reversals of response. To validate its serviceability, nodal displacements and element stresses, as well as the yielding members, of two typical latticed arches are calculated. Through comparative analysis, the results by the improved procedure exhibit good agreement with those by response history analysis. Additionally, this procedure demonstrates great superiority over the conventional method for its satisfying accuracy.  相似文献   

8.
Seismic responses of unsymmetric-plan tall buildings are substantially influenced by the effects of higher modes and torsion. Considering these effects, in this article, the consecutive modal pushover (CMP) procedure is extended to estimate the seismic demands of one-way unsymmetric-plan tall buildings. The procedure uses multi-stage and classical single-stage pushover analyses and benefits from the elastic modal properties of the structure. Both lateral forces and torsional moments obtained from modal analysis are used in the multi-stage pushover analysis. The seismic demands are obtained by enveloping the peak inelastic responses resulting from the multi-stage and single-stage pushover analyses. To verify and appraise the procedure, it is applied to the 10, 15, and 20-storey one-way unsymmetric-plan buildings including systems with different degrees of coupling between the lateral displacements and torsional rotations, i.e. torsionally-stiff (TS), torsionally-similarly-stiff (TSS) and torsionally-flexible (TF) systems. The modal pushover analysis (MPA) procedure is implemented for the purpose of comparison as well. The results from the approximate pushover procedures are compared with the results obtained by the nonlinear response history analysis (NL-RHA). It is demonstrated that the CMP procedure is able to take into account the higher mode influences as well as amplification or de-amplification of seismic displacements at the flexible and stiff edges of unsymmetric-plan tall buildings. The extended procedure can predict to a reasonable accuracy the peak inelastic responses, such as displacements and storey drifts. The CMP procedure represents an important improvement in estimating the plastic rotations of hinges at both flexible and stiff sides of unsymmetric-plan tall buildings in comparison with the MPA procedure.  相似文献   

9.
Nonlinear static procedures are favored tools for practical applications in the structural engineering profession. However, some limitations are associated with them, including their deficiencies to properly reflect higher modal effects and inertial seismic forces fluctuations in their responses. Some different adaptive pushover methods intended to improve these limitations have been proposed in the literature, but each one has come out with a special deficiency. In this study, based on the concepts of the displacement‐based adaptive pushover, a new dual‐run procedure method called Improved DAP (IDAP) has been developed, aiming to improve higher modal and sign reversal consideration of pushover methods. The seismic scope of this study has been focused on near‐fault regions. Four concrete SMRF with different heights have been employed for the evaluations. The results of the proposed method in terms of capacity curves, interstory and shear profiles are compared with those of the IDA method. Results indicate that the ability of the new method in reproducing seismic story forces and capacity curves, as well as interstory drifts, has been improved in comparison with its primitive counterpart. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
刘华峰  王钢  黄祥纹 《钢结构》2014,29(10):47-50
针对四川某500 kV输电线路工程中代表性的杯形直线塔及“干”字形转角塔,利用钢结构分析设计软件STAAD建立梁桁混合模型,采用振型分解反应谱法进行不同地震水准、抗震设防烈度、场地类别下的动力特性和地震响应分析,对比研究非抗震和抗震两种情况下杆件的设计控制内力,分析地震作用对铁塔各杆件的影响程度,找出杯形塔及“干”字塔的薄弱部位,并针对薄弱部位采取加强措施.  相似文献   

11.
Standard 5% damping ratio for high‐rise concrete structures is generally used for dynamic analysis under the action of wind and earthquakes in the existing cooling tower regulations and researches. But considering the unique configuration and material attributes of large cooling towers, the actual damping ratio must be far smaller than the recommended. However, only a few field measurements of damping ratio for large cooling towers have been conducted; neither are there thorough investigation into the qualitative and quantification of wind and seismic effects under different damping ratio. To fill this gap, field measurements of a large cooling tower standing 179 m in northwestern China was performed and acceleration vibration signals at representative positions of the tower under ambient excitation were obtained. The vibration signals were preprocessed combining random decrement technique and natural excitation technique. Three pattern recognition methods (auto‐regressive and moving mean model, Ibrahim time domain, and spare time domain (STD)) were applied to analyze the frequencies, damping ratios, and modes of vibration for the first 10 order modes. Following the line of thought of modal combination, the equivalent synthetic damping ratio was derived. Under 5 damping ratios (0.5%, 1%, 2%, 3%, and 5%), a comparative analysis on the dynamic responses of the cooling tower to wind and single seismic loading by using full transient method was performed. On this basis, the patterns of influence of damping ratio on wind‐induced vibration, wind vibration coefficient, and time history and extrema of seismic responses were extracted. Finally, different combinations of dead weight, wind, temperature in winter, sunshine duration, and seismic intensity and those of accidental seismic effects (8 working conditions) were considered, using equivalent synthetic damping ratio and standard damping ratio. Thus, the most unfavorable working conditions were identified under actual and standard damping ratios for the large cooling tower. Our research findings provide reference for determining the value of damping ratio in large cooling towers and deepening the understanding on the influence mechanism of damping ratio.  相似文献   

12.
框架——剪力墙结构的静力弹塑性分析研究   总被引:2,自引:0,他引:2  
静力弹塑性方法作为一种评价结构抗震性能和计算结构弹塑性变形的简化方法,近年来得到了广泛应用。但由于传统的定侧力模式的静力弹塑性方法只考虑第一振型,无法反映高层建筑结构的高阶振型影响。为考虑高阶振型的影响,Chopra在振型分解反应谱组合法的基础上,提出了MPA方法。本文首先讨论了应用MPA方法需注意的问题,然后用一个18层钢筋混凝土框架—剪力墙结构为算例,以逐步增量弹塑性时程分析结果为基准,对传统定侧力模式静力弹塑性方法和MPA方法的分析结果进行了对比研究。结果表明,相比于定侧力模式静力弹塑性分析结果,MPA方法的分析结果更接近弹塑性时程分析结果。  相似文献   

13.
对结构静力弹塑性分析方法的几点改进   总被引:7,自引:0,他引:7  
探讨了结构静力弹塑性分析方法的基本原理,指出了该方法目前存在的缺陷,基于模态Pushover法(MPA)提出了根据振型参与重量来确定对结构地震反应起主要影响的振型数以及两阶段的侧向力加载模式,并对确定结构目标位移的方法作了一些改进。采用动力时程分析法和改进的静力弹塑性方法,对一个优化钢框架结构的地震反应进行了数值模拟分析,其结果表明,采用本文改进的静力弹塑性分析方法对结构进行推覆分析,能较准确地模拟结构的地震反应,具有易操作、计算精度高的优点。  相似文献   

14.
An improved consecutive modal pushover (ICMP) procedure is proposed to enhance the accuracy of conventional CMP procedure for estimating seismic demands of tall buildings. It accounts for inelastic structural properties and interaction between vibration modes. The displacement increment at the roof of buildings used in each stage of pushover analyses is modified based on the displacement contribution of each mode. The performance of the proposed ICMP procedure is verified against three high‐rise frames subjected to various ground motions. The results obtained from the ICMP procedure are compared with those from the nonlinear time history analysis, conventional pushover analysis, and CMP analysis. The comparison shows the advantages of the ICMP over the other pushover procedures. It is concluded that the ICMP procedure is more accurate than the CMP procedure.  相似文献   

15.
地震作用下大型地铁车站结构三维动力反应分析   总被引:1,自引:0,他引:1  
引入三维等效黏弹性边界单元,阐述波动散射问题的自由波场输入方法,推广应用于三维水平成层半空间模型,采用集中有限元质量模型和有限差分的概念将地震动场转化为施加在人工边界节点上的等效荷载。基于某大型地铁车站,利用大型通用有限元ABAQUS软件建立考虑土–结构动力相互作用的三维有限元整体计算模型,通过局部人工边界的施加,实现了开放系统向封闭系统的转换,对土–地铁车站结构动力相互作用的整体三维模型进行模态分析,得到车站以及地基的振型特征。分析地铁车站结构在SV波及P波地震波作用下的反应,得到相应的内力分布规律和结构不利位置。从分析结果可以看出,地震波横向SV波输入时对车站结构最不利,结构刚度突变位置的构件内力也存在突变,而P波对结构的轴力影响较大。  相似文献   

16.
湖北省图书馆新馆多项超限高层结构的抗震设计   总被引:1,自引:0,他引:1  
湖北省图书馆新馆为特别不规则的多项超限复杂高层建筑。根据本工程的结构特点,有针对性地选择了抗震性能目标,采用基于性能的抗震设计方法,对该结构进行了抗震设计。通过采用SATWE和MIDAS软件,分别进行小震作用下静力和弹性时程分析、中震作用下特别重要构件的弹性设计及其它构件不屈服判别分析、大震作用下静力弹塑性推覆(Pushover)分析,找到了结构抗震薄弱部位,采取了对应的抗震加强设计。最后的计算结果表明,该工程的结构抗震设计及采取的抗震加强措施能满足抗震设防要求,其抗震设计理念对类似建筑具有较好的参考价值。  相似文献   

17.
This study presents a simplified analysis procedure for the convenient estimation of nonlinear seismic demands of high‐rise rocking wall structures. For this purpose, the displacement modification approach used in the nonlinear static procedure of ASCE/SEI 41‐13 is adopted. However, in the current study, this approach is extended to every significant vibration mode of the structure whereas the displacement modifying coefficients for different modes are calculated using the typical flag‐shaped hysteresis behavior of rocking walls. The parameters of this hysteresis behavior are selected to represent rocking walls with a practical range of energy dissipation capacity and postgap‐opening stiffness. The computed peak inelastic‐to‐elastic displacement ratios are presented as mean spectra, which can be used for the convenient estimation of pushover target displacement for every significant vibration mode. The accuracy of proposed procedure is examined using the seismic demands obtained from the nonlinear response history analysis of a 20‐story case study rocking wall structure. Furthermore, a modal decomposition technique is used to determine the individual modal seismic demands. The proposed procedure is found to predict both the combined and the individual modal demands with a reasonable accuracy and can serve as a convenient analysis option for the design and performance evaluation of high‐rise rocking wall systems.  相似文献   

18.
某多塔连体高层建筑的竖向地震反应分析   总被引:2,自引:0,他引:2  
针对设有长33.6m的连体和长16.8m悬臂的某多塔连体高层结构,采用ETABS软件对其竖向振动特性和竖向地震反应进行了分析。结果表明,该工程前三阶竖向振型的周期与场地卓越周期接近;前19阶竖向振型均位于反应谱平台段;竖向振动与水平振动存在耦合,意味着结构在水平地震作用下会产生竖向动力效应;在7度多遇竖向地震作用下,连体部分和悬臂部分的结构内力响应较显著而竖向位移响应均较小。  相似文献   

19.
为估计模态叠加法中模态截断对结构地震作用下位移、速度、加速度反应的影响,对比分析了累积振型参与质量误差、静荷载参与比误差、质量相关荷载作用下的位移误差、累积振型贡献系数误差、累积振型加速度贡献系数误差和单位阵误差等模态截断指标随模态数目增加的变化规律。以一个5层剪切框架、一个单向不对称的4层框架和一个框架支撑结构的地震反应为例,讨论了结构位移、速度和加速度反应的模态截断误差与模态截断指标的关系。算例分析结果表明,静荷载参与比误差高估了低阶模态的影响而使模态截断数目偏少;质量相关荷载作用下的位移误差所得模态数目不稳定,这两个指标不适合作为模态截断的依据。对于悬臂类结构,模态截断所产生的累积误差以加速度的最大,速度的次之,位移的最小;对于位移反应,首层平动位移的累积振型贡献系数误差和累积振型参与质量误差可作为位移反应模态截断的依据;高阶模态对结构加速度反应的贡献大于对位移反应的贡献,应采用累积振型加速度贡献系数误差作为加速度反应模态截断的依据。  相似文献   

20.

The main objective of the paper is the development and evaluation of a multi-mode pushover procedure for the approximate analysis of the seismic response of steel moment-resisting frames. A generalized force vector derived from modal combination simulates the instantaneous force distribution acting on the structure when the interstorey drift reaches its maximum value during dynamic response to a seismic excitation. Considering the interstorey drift for each floor, a set of generalized force vectors (each associated to maximum drift at one story) is applied separately to the structure until the corresponding target interstorey drift is attained. The maximum value of each response parameter is obtained from the envelope of results. This multi-run and multi-mode pushover procedure allows a simple implementation, reducing the computational effort compared with adaptive nonlinear static procedures and with nonlinear response history analysis. Furthermore, it does not suffer from the statistical combination of inelastic modal responses calculated separately. Both effectiveness and accuracy are verified through a comparative study involving regular steel moment resisting frames subjected to various acceleration records. The results are finally compared with those obtained from other nonlinear static procedures and with the “exact” values from nonlinear response history analysis. It is demonstrated that the proposed procedure is able to accurately predict the seismic demands of steel moment-resisting frames. In low- and middle-rise frames, the error of interstorey drift ratios of the proposed procedure is in the range 5.8-20.8% when the intensity level of the input ground motion varies in the range 0.2-0.8 g. In high-rise frames the error of interstorey drift ratios is in the range 6.38-20.9%.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号