首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
采用化学气相渗透工艺在Nextel 720纤维表面制备PyC和PyC/SiC两种涂层,然后以正硅酸乙酯和异丙醇铝作为先驱体,以先驱体浸渗热解法制备三维Nextd 720纤维增韧莫来石陶瓷基复合材料,比较分析了两种涂层复合材料的力学性能和断裂模式。结果表明:具预先涂覆PyC的复合材料中纤维与基体直接接触,发生烧结形成强结合界面,复合材料脆性断裂,三点抗弯强度仅56MPa。PyC/SiC涂层则演化为间隙/SiC复合界面层,SiC成为阻滞纤维与基体接触的阻挡层,间隙保证了纤维拔出,复合材料韧性断裂且三点抗弯强度高达267.2MPa。  相似文献   

2.
连续纤维增韧碳化硅陶瓷基复合材料研究   总被引:27,自引:6,他引:27  
采用化学气相浸渗法制造了连续碳纤维和碳化硅纤维增韧碳化硅陶瓷基复合材料,并对复合材料的显微结构和力学性能进行了研究,C/SiC/SiC复合材料的密度分别为2.1g/cm^3和2.5g/cm63,在断理解过程中表现出明显的非线性和非灾难性的断裂行为和规律,C/SiC和SiC/SiC弯曲强度分别为450MPa和850MPa,从室温至1600℃强度不发生降低;断裂韧性为20MPa.m^1/2和41.5MPa.m^1/2,断裂功为10kJ.m^-2和28.1kJ.m^-2,冲击韧性为62.0kJ.m^-2和36.0kJ.m^-2,C/SiC和SiC/SiC复合材料具有优异的抗热震性能,经1300℃→←3000℃,50次热震后,强度保持率高达96.4%,热震不是材料性能损伤的控制因素,而SiC/SiC复合材料优异的抗氧化性能,对温度梯度不敏感,得合材料喷管在液体火箭发动机上成功地通过了地面实验。  相似文献   

3.
以SiC纳米纤维(SiCnf)为增强体,通过化学气相沉积在SiC纳米纤维表面沉积裂解碳(PyC)包覆层,并与SiC粉体、Al2O3-Y2O3烧结助剂共混制备陶瓷素坯,采用热压烧结工艺制备质量分数为10%的SiC纳米纤维增强SiC陶瓷基(SiCnf/SiC)复合材料。研究了PyC包覆层沉积时间对SiCnf/SiC陶瓷基复合材料的致密度、断裂面微观形貌和力学性能的影响。结果表明:在1 100 ℃下沉积60 min制备的PyC包覆层厚度为10 nm,且为结晶度较好的层状石墨结构;相比于纤维表面无包覆层的复合材料,复合材料的断裂韧性提高了35%,达到最大值(19.35±1.17) MPa·m1/2,抗弯强度为(375.5±8.5) MPa,致密度为96.68%。复合材料的断裂截面可见部分纳米纤维拔出现象,但SiCnf/SiC陶瓷基复合材料界面结合仍较强,纳米纤维拔出短,表现为脆性断裂。  相似文献   

4.
利用化学气相浸渗法制备了Cf-C/SiC复合材料,借助SEM、TEM等研究了纤维类型对Cf-C/SiC复合材料力学性能的影响.实验证明T300碳纤维增韧补强效果优于M40碳纤维,利用T300碳纤维制备出弯曲强度为459M,断裂韧性为20.0MPa*m1/2,断裂功为25170J/m2的Cf-C/SiC复合材料.2种碳纤维增韧效果的差异是由纤维的原始强度、热膨胀系数和弹性常数的不同决定的.  相似文献   

5.
三维针刺C/SiC复合材料的结构特征和力学性能   总被引:3,自引:0,他引:3  
采用化学气相渗透法制备了在厚度方向上具有纤维增强的三维针刺碳纤维增强碳化硅(C/SiC)陶瓷基复合材料,复合材料的密度和气孔率分别为2.15 h/cm3和16%.三维针刺C/SiC复合材料中的针刺纤维将各层紧密结合在一起,其层间抗剪切强度显著提高,为95MPa,比二维碳布叠层C/SiC复合材料的剪切强度(35MPa)高171.4%.三维针刺C/SiC复合材料的拉伸强度和弯曲强度分别为159MPa和350MPa,断裂模式为非脆性断裂,包括:裂纹扩展、偏转,碳纤维的拉伸断裂和逐步拔出.  相似文献   

6.
以Si粉为烧结助剂,采用真空热压烧结工艺制备了SiC/B4C陶瓷基复合材料.研究了Si的加入和烧结压力对复合材料力学性能的影响.借助X射线衍射、扫描电镜分析了复合材料的物相组成和微观结构.研究结果表明:Si与B4C粉料中的游离碳反应,随后固溶到B4C晶体结构中.当Si质量百分含量为8%时,经18.50℃、60 MPa真空热压烧结的复合材料主晶相为B4.C、SiC,相对密度达到99.8%,断裂韧性和弯曲强度分别达到5.04 MPa·m1/2和354 MPa.复合材料力学性能的提高主要是由于烧结体的高致密度以及断裂方式的转变.  相似文献   

7.
采用不同表面宫能团的预氧化聚丙烯腈(PAN)纤维作为增强体,以酚醛树脂和煤沥青分别为基体材料制成的碳/碳复合材料已经开发出来了。树脂基复合材料的热解行为表现为:横截面收缩以及分别为18-24%和32-40%的重量损失,这取决于预氧化PAN纤维表面所含表面宫能团的数量。经1000℃热处理,树脂基复合材料的弹性强度和弹性模量分别在11.0-30MPa和30-50GPa范围内,而煤沥青基复合材料则在35-55MPa和30-50GPa范围内。经过石墨化(2700℃)处理后,树脂基复合材料的机械性能改变不大(复合物变脆),但煤沥青基复合材料的弱性强度则增加了4-6倍(200-250MPa),弹性模量增加2-3倍(100-120PGa)。因此,可利用预氧化PAN纤维作增强体来制备碳/碳复合材料,且与商业级碳纤维增强的碳/碳复合材料具有大致相同的机械性能(T-300,日本东丽制)。  相似文献   

8.
以SiC和Si微米粉为添加剂,采用无压烧结工艺制备了纳米SiC增韧的Al2O3陶瓷复合材料,探讨了SiC含量、烧结气氛和烧结温度对复合材料的烧成收缩率、微观形貌、抗弯强度、维氏硬度及断裂韧性的影响。结果显示:SiC的添加使复合材料的烧成收缩率下降,惰性气氛下复合材料的收缩率要大于氧化气氛和还原气氛时的收缩率。在氧化性气氛下烧结时,当SiC添加量为4%时,复合陶瓷的体积密度为3.80 g·cm^-3,抗弯强度、断裂韧性及维氏硬度均达到最大值,分别为480 MPa、5.12 MPa·m1/2、16.2 GPa。添加SiC后所得复合材料的基体颗粒为椭圆状,粒径为2μm左右,颗粒与颗粒之间结合紧密,颗粒形状的改变可能是因为烧结机理发生变化所致。纳米SiC颗粒位于晶界处,形成了由Al2O3-SiC-Al2O3搭桥联结的晶界,提高了晶界强度,导致裂纹只能在晶内传播。  相似文献   

9.
以Y2O3、Al2O3为烧结助剂,采用无压烧结法制备短碳化硅纤维(2~4mm)增强碳化硅(ShortSiCfiberreinforcedSiCcomposite,SiCsf/SiC)复合材料,研究了纤维氧化处理对SiCsf/SiC复合材料结构及力学性能的影响。采用X射线衍射(XRD)、扫描电镜(SEM)以及力学性能试验机对材料进行结构表征和力学性能测试。结果表明:纤维氧化处理后,复合材料的弯曲强度和断裂韧性均有大幅提高。当纤维含量达到5wt%时,复合材料断裂韧性为5.41MPa.m1/2,与原始纤维增强SiC样品相比,提高了6.5%;与无纤维增强SiC样品相比,提高了27%。扫描电镜显示纤维氧化处理后,纤维与基体结合紧密。  相似文献   

10.
以单晶SiC纳米线作为增强体,碳化硅-碳为陶瓷基体,在1550℃下,采用反应烧结制备碳化硅基陶瓷复合材料(SiCnf/SiC).结合X射线衍射、万能试验机和扫描电镜等检测和分析,研究SiC纳米线对复合材料的微结构和力学性能的影响.研究表明:与未加入SiC纳米线的反应烧结碳化硅陶瓷相比,添加SiC纳米线的复合陶瓷的抗弯强度和断裂韧性都得到显著的提高,抗弯强度提高了52%,达到320 MPa(SiC纳米线含量为12wt%),断裂韧性提高了40.6%,达到4.5 MPa· m1/2(SiC纳米线含量为15wt%);反应后的SiC纳米线仍然可以保持原有的竹节状结构,且随着SiC纳米线的加入,复合陶瓷的断口可以观察到SiC纳米线拔出现象.但由于SiC纳米线“架桥”的现象,添加过量的纳米线会降低复合陶瓷的密度和限制复合陶瓷力学性能的提高.同时还讨论了SiCnf/SiC的增强机理.  相似文献   

11.
以SiC晶须作为增强体,通过酚醛树脂高温碳化裂解获得碳包覆的SiC晶须,与纳米碳化硅粉体、炭黑混合均匀形成复合陶瓷乙醇浆料.经过干燥、造粒、成型和排胶后获得SiCw-C-SiC素坯,利用反应熔渗法制备高体积分数的SiC晶须增强SiC陶瓷基复合材料.研究了碳黑含量对复合材料力学性能与显微结构的影响.通过扫描电镜照片显示,碳包覆的SiC晶须经高温反应熔渗后仍保持表面的竹节状形貌,且晶须与碳化硅基体间形成适中的界面结合强度,材料断口处有明显的晶须拔出;当炭黑含量为15wt%时,抗弯强度和断裂韧性达到最高值分别为315 MPa和4.85 MPa·m1/2,比未加晶须的SiC陶瓷抗弯强度提高了25%,断裂韧性提高了15%;当炭黑含量为20wt%时,复合材料中残留部分未反应的炭黑,制约其力学性能的提高.  相似文献   

12.
丁明伟  张政梅 《硅酸盐通报》2013,32(10):1998-2002
本文以SiC为基体,添加(W,Ti)C固溶体增韧相,采用热压烧结工艺制备出新型Sic/(w,Ti)C陶瓷复合材料.研究表明:SiC/(W,Ti)C陶瓷材料的性能与(W,Ti)C的含量、成烧温度、保温时间等密切相关.随(W,Ti)C含量的增加,材料的致密度、抗弯强度和断裂韧性增加,硬度减小;SiC/(W,Ti)C陶瓷复合材料的最佳性能参数为:抗弯强度631 MPa,维氏硬度25.944 GPa,断裂韧性4.38 MPa·m1/2.通过分析材料的显微结构和断口SEM照片,发现SiC/(W,Ti)C陶瓷材料的断裂机制为沿晶和穿晶断裂特征同时并存,即断裂方式为沿晶断裂和穿晶断裂相结合的混合断裂.  相似文献   

13.
SiCw/Y—TZP复合材料的增韧机理及其力学性能   总被引:3,自引:0,他引:3  
研究了SiC晶须补强Y-TZP基复合材料的显微结构及其力学性能,探讨了晶须性能和t-ZrO_2稳定度对增韧特性的影响规律。分析表明:适当控制稳定剂Y_2O_3的含量以调节t-ZtO_2的稳定度,并选择合适的晶须能使Y-TZP基复合材料中晶须补强与相变增韧产生协同增韧的效果。所研制的添加5 vol.%优质siC晶须的2.2Y-TZP基复合材料,其室温强度和断裂韧性分别达到1130 MPa和19.1 MPa·m~(1/2)。  相似文献   

14.
二硼化锆基超高温陶瓷的制备及性能   总被引:1,自引:0,他引:1  
王海龙  汪长安  张锐  黄勇  方岱宁 《硅酸盐学报》2007,35(12):1590-1594
用碳化硅(SiC)颗粒增韧二硼化锆(ZrB2)陶瓷,在氩气流中热压烧结温度为1 950℃、保温1 h,20 MPa压力下成功制备出了致密的ZrB2/SiCp复合材料.ZrB2/SiCp复合材料的致密度随着SiC颗粒添加量的增加而增加.当SiC颗粒的体积分数(下同)为15%时,相对致密度达到100%.ZrB2/SiCp复合材料的抗弯强度和断裂韧性都随着SiC添加量的增加成上升趋势,当SiC颗粒的添加量在15%时同时达得最大值,分别为646 MPa和8.52 MPam·m1/2.SiCp的添加还提高了ZrB2/SiCp复合材料的耐氧化烧蚀性能.  相似文献   

15.
以碳化硅(SiC)纤维为增强体,采用真空浸渍法制备了2.5维连续SiC纤维增韧的SiO2基(SiCf/SiO2)复合材料,研究了SiC纤维编织体上不同的界面层对SiCf/SiO2复合材料力学性能的影响.化学气相渗透(CVI)法制备的热解碳(PyC)和PyC/SiC双层界面层分别使材料的抗弯强度由无界面层的52.2 MPa提高至67.4 MPa和180.3 MPa,但均使材料的韧性降低.用扫描电镜观察了材料的断口形貌,结果表明,PyC和PyC/SiC层不仅提高了材料的抗弯强度,而且增加了基体同纤维间的结合力,使基体有效地将载荷传递给纤维.PyC/SiC层能有效地保护SiC纤维,防止烧结过程中释放出的结晶水对纤维的损伤,有助于提高材料的力学性能.  相似文献   

16.
基体改性对碳纤维增韧碳化硅复合材料结构与性能的影响   总被引:2,自引:0,他引:2  
采用化学气相浸渗法对2D C/SiC复合材料进行基体改性,制备了二维碳纤维增韧碳-碳化硅二元基复合材料(two dimensional carbon fiber reinforced C-SiC binary matrix composites,2D C/C-SiC).2D C/C-SiC复合材料的基体为热解碳和碳化硅交替叠层的多层基体.研究了2D C/C-SiC复合材料的微观结构,比较了2DC/SiC复合材料和2DC/C-SiC复合材料的力学性能及断口形貌.结果表明:2DC/C-SiC复合材料可在基本保持2DC/SiC复合材料抗弯强度的基础上,其断裂韧性得到显著提高.基体改性的效果明显.纤维的逐级拔出是断裂韧性提高的原因.  相似文献   

17.
以三维四向编织方式的碳化硅纤维预制体为增强相,选用聚碳硅烷为先驱体浸渍剂,采用聚合物先驱体浸渍裂解工艺制备了SiC纤维增强SiC陶瓷基(SiC/SiC)复合材料,进而采用自主设计研制的陶瓷基复合材料高温面内剪切测试夹具对SiC/SiC复合材料进行高温面内剪切强度测试,分析研究了试样形状尺寸、加载速率、夹具材料等对SiC/SiC复合材料高温面内剪切强度测试结果的影响,并分析了夹具材料、测试环境等对测试夹具寿命的影响,最终优化确认出一套较优的针对SiC/SiC复合材料的高温面内剪切强度测试方法。  相似文献   

18.
莫来石纤维含量对氧化铝基陶瓷复合材料性能的影响   总被引:2,自引:0,他引:2  
本课题选用氧化铝粉和多晶莫来石纤维为主要原料,添加1wt%的TiO2和3wt%的CMS(CaO、MgO、SiO2混合物)助熔剂,用电磁振荡搅拌器混料与球磨机混料相结合的方式进行混料,采用单向加压方式成形,使用传统的无压烧结技术制备出了莫来石纤维增强增韧氧化铝陶瓷基复合材料,并对复合材料的性能进行测试.研究发现:复合材料的弯曲强度随纤维含量的增加先增大后降低,纤维含量为15wt%时,复合材料的弯曲强度最高,达504.52MPa,是普通氧化铝陶瓷的1.7倍;复合材料的断裂韧性随着纤维含量的增加先增加后降低,莫来石纤维含量为15wt%时,复合材料的断裂韧性最大达到4.46MPa·ml/2,是普通氧化铝陶瓷的1.6倍;复合材料的抗热震性能随纤维含量的增加而提高.当烧结温度为1450℃,纤维含量为15wt%时,MFTACC的综合性能较好.  相似文献   

19.
短切碳纤维含量对Csf/SiC复合材料力学性能的影响   总被引:1,自引:0,他引:1  
以Si作为主要烧结助剂,采用热压烧结法制备了短切碳纤维-碳化硅(short carbon fiber reinforced SiC composite,Csf/SiC)复合材料.采用X射线衍射仪、扫描电镜、硬度仪以及力学性能试验机等,研究了Csf含量对所制备材料的结构、组成、形貌及复合材料的弯曲强度、Vickers硬度和断裂韧性的影响.结果表明:采用热压法能制备出致密且Csf分布均匀的Csf/SiC复合材料.Csf/SiC复合材料的弯曲强度随Csf含量增加先增大后减小,含15%(体积分数,下同)Csf的Csf/SiC样品强度最高,达到466MPa,并且Csf含量小于30%的Csf/SiC样品强度高于无纤维SiC材料.材料的Vickers硬度随Csf含量增加而降低.Csf/SiC样品的断裂韧性随Csf含量增加而逐渐增大,Csf含量为53%时,达到最大为5.5MPa·m1/2,与无纤维SiC样品相比,增加近2倍.  相似文献   

20.
本文以聚丙烯腈(PAN)预氧化纤维为先驱体,以氧化铝为主要原料,添加SiO2-MgO-CaO三系助熔剂,采用真空热压烧结法制备了原位转化碳纤维增韧氧化铝复合材料.主要探讨不同助熔剂添加量对复合材料微观结构和各项性能指标的影响.以体积密度、显微硬度和断裂韧性等性能指标为主要评价标准选择最佳的助熔剂添加量.并研究了原位转化碳纤维增韧氧化铝陶瓷的摩擦磨损行为与机制以及力学性能和微观结构对摩擦磨损特性的影响.结果表明:当助熔剂含量为3vol%时,复合材料的综合性能最优,此时体积密度为3.72 g·cm-3,显微硬度为1624 HV,断裂韧性为10.6 MPa·m1/2.在室温干摩擦条件下,复合材料的磨损率随着助熔剂含量的增加呈先升高后降低趋势.室温下原位转化碳纤维增韧氧化铝基复合材料的磨损机制以脆性剥落为主,并伴有疲劳磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号