首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
2.
This paper reports clinical and cytogenetic data from 125 cases with t(9;11)(p21-22;q32) which were accepted for a European Union Concerted Action Workshop on 11q23. This chromosome abnormality is known to occur predominantly in acute myeloid leukemia (AML) FAB type M5a and less often in AML M4; in this series it was also found to occur, uncommonly, in other AML FAB types, in childhood acute lymphoblastic leukemia (ALL) (nine cases), in relatively young patients with myelodysplastic syndrome (MDS) (five cases), acute biphenotypic leukemia (two cases), and acute undifferentiated leukemia (one case). All age groups were represented but 50% of the patients were aged less than 15 years. The t(9;11) was the sole abnormality in 57 cases with AML; trisomy 8 was the most common additional abnormality (23 cases, including seven with further abnormalities), and 28 cases had other additional abnormalities. Among the t(9;11)+ve patients with AML, the white cell count (WBC) and age group were significant predictors of event-free survival; central nervous system (CNS) involvement or karyotype class (sole, with trisomy 8, or with other), also contributed to prognosis although our data could not show these to be independent factors. The best outcome was for patients aged 1-9 years, with low WBC, and with absence of CNS disease or presence of trisomy 8. For patients aged less than 15 years, the event-free survival for ALL patients was not significantly worse than that of AML patients.  相似文献   

3.
4.
In a previous study of acute leukemia, we have shown that WT1 gene mutations occur in both myeloid and biphenotypic subtypes, where they are associated with refractoriness to standard induction chemotherapy. We have now extended this study to a total of 67 cases (34 acute myeloid leukemia [AML], 23 acute lymphoblastic leukemia [ALL], 10 acute undifferentiated leukemia [AUL]/biphenotypic) and find that WT1 mutations occur in 14% of AML and 20% of biphenotypic leukemia, but are rare in ALL (one case). In contrast to the findings in Wilms' tumor, where mutations in the WT1 gene usually behave according to Knudson's two hit model for tumor suppressor genes, seven of eight leukemia-associated WT1 mutations are heterozygous, implying a dominant or dominant-negative mode of action in hematopoietic cells. In AML, the presence of a WT1 mutation is associated with failure to achieve complete remission and a lower survival rate. These data (1) confirm that WT1 mutations underlie a similar proportion of cases of AML to that seen in Wilms' tumors and (2) show for the first time that WT1 mutations can contribute to leukemogenesis of lymphoid as well as myeloid origin, suggesting that its normal role in hematopoiesis lies at a very early progenitor stage. The relationship of WT1 mutation to chemoresistance merits further investigation.  相似文献   

5.
Phenotypic conversion from acute myeloid leukemia (AML) to acute lymphoblastic leukemia (ALL) is rare. A 38-year-old man was initially diagnosed as having AML (FAB-M2) associated with the t(8;21)(q22;q22) chromosomal abnormality. The blasts showed myeloperoxidase (MPO) activity and CD13 antigen expression. He showed complete remission after standard chemotherapy for AML. However, the patient relapsed with blasts showing ALL morphology (FAB-L1), MPO negativity, and CD19 antigen expression 33 months after cessation of AML therapy. Cytogenetic analysis at relapse was unsuccessful. Molecular analysis of ALL blasts revealed immunoglobulin heavy-chain gene and MLL gene rearrangements but no AML1 gene. MLL gene rearrangement or the 11q23 chromosomal abnormality has been associated with therapy-related leukemia. The subsequent ALL in our patient may have been induced by the chemotherapy including daunorubicin, known as a topoisomerase II inhibitor.  相似文献   

6.
7.
Cytogenetic analysis of a bone marrow aspirate from a patient with acute lymphoblastic leukemia (ALL) revealed the presence of a complex karyotype containing the translocation, t(14;18)(q32;q21). Further investigations using fluorescence in situ hybridization (FISH) allowed the characterization of an additional translocation, t(8;9)(q24;p1?). The association of t(14;18)(q32;q21) and t(8;9)(q24;p13) has recently been described in two patients with de novo ALL (Nacheva et al. Blood 1993;82:231-240) and this report supports these findings.  相似文献   

8.
Cytogenetic analysis of childhood acute lymphoblastic leukemia (ALL) identified nonrandom chromosomal abnormalities of the long arm of chromosome 6. Most of the alterations are deletions that are thought to be indicative of the presence of a tumor suppressor gene that is mutated on the remaining allele. These observations led us to consider whether 6q loss may contribute to the pathogenesis of childhood ALL. To define further a region containing this gene, we analyzed the loss of heterozygosity (LOH) of chromosome 6 in 113 primary ALL samples with matched normal DNA using 34 highly informative microsatellite markers. LOH was found in 17 (15%) samples at one or more of the loci, and partial or interstitial deletions of 6q were detected in 11 of these tumors. On the basis of these results, we performed a detailed deletional map and identified two distinct regions of deletion. The first region is flanked by D6S283 and D6S302 loci at 6q21-22. The second region is flanked by D6S275 and D6S283 loci at 6q21. Clinical analysis determined that LOH of 6q was demonstrated both in precursor-B cell ALLs (15 of 93; 16%) and in T cell ALLs (2 of 19; 11%). In addition, 19 patients have been studied at diagnosis and relapse; 18 showed the same 6q21-22 structural abnormality at relapse (normal, 16 patients; LOH, 2 patients) as their initial presentation, suggesting, albeit with a small patient sample size, that 6q21-22 deletions may be an initial event in leukemogenesis and may occur less frequently during the progression of childhood ALL. These data suggest the presence of putative tumor suppressor genes on chromosome arm 6q that are important in the development of both T and precursor-B childhood ALLs. Our map provides important information toward cloning putative ALL tumor suppressor genes.  相似文献   

9.
We used single-strand conformation polymorphism (SSCP) analysis of p53 exons 4-8 to screen for possible mutations in 25 pediatric de novo leukemias with translocations of the MLL gene at chromosome band 11q23. Of the 25 patients, 21 were infants. Fifteen cases were acute myeloid leukemia (AML), eight were acute lymphoblastic leukemia (ALL), and two cases were biphenotypic. Nineteen cases were studied at diagnosis and six at time of relapse. p53 mutations were absent in all 19 cases studied at the time of diagnosis. The only mutation was a TGC-->TTC transversion (cys-->phe) at codon 141 in exon 5 in a case of infant ALL at relapse that occurred by subclone evolution after MLL gene translocation. We previously showed that p53 mutations are also absent in pediatric treatment-related leukemias with MLL gene translocations. The absence of p53 mutations at initial transformation may suggest that the anti-apoptotic effect of mutant p53 is not important in leukemias with MLL gene translocations. Alternatively, exogenous DNA damage may be the common feature in treatment-related and de novo cases. Since MLL gene translocations may occur through DNA repair and wild-type p53 is central to DNA repair, the absence of p53 mutations raises the possibility that wild-type p53, not mutant p53, may be important in the genesis of leukemias with these translocations.  相似文献   

10.
We document findings on c-kit (CD117) expression in 1,937 pediatric and adult de novo acute leukemia cases, diagnosed in five single European centers. All cases were well characterized as to the morphologic, cytochemical, and immunologic features, according to the European Group for the Immunological Classification of Leukemias (EGIL). The cases included 1,103 acute myeloid leukemia (AML), 819 acute lymphoblastic leukemia (ALL), 11 biphenotypic acute leukemia (BAL), and 4 undifferentiated (AUL). c-kit was expressed in 741 (67%) AML cases, regardless of the French-American-British (FAB) subtype, one third of BAL, all four AUL, but only in 34 (4%) of ALL cases. The minority of c-kit+ ALL cases were classified as: T-cell lineage (two thirds), mainly pro-T-ALL or T-I, and B lineage (one third); cells from 62% of these ALL cases coexpressed other myeloid markers (CD13, CD33, or both). There were no differences in the frequency of c-kit+ AML or ALL cases according to age being similar in the adult and pediatric groups. Our findings demonstrate that c-kit is a reliable and specific marker to detect leukemia cells committed to the myeloid lineage, and therefore should be included in a routine basis for the diagnosis of acute leukemias to demonstrate myeloid commitment of the blasts. c-kit expression should score higher, at least one point, in the system currently applied to the diagnosis of BAL, as its myeloid specificity is greater than CD13 and CD33. Findings in ALL and AUL suggest that c-kit identifies a subgroup of cases, which may correspond to leukemias either arising from early prothymocytes and/or early hematopoietic cells, both able to differentiate to the lymphoid and myeloid pathways.  相似文献   

11.
12.
Infant acute leukemia, known to have a poor outcome with conventional therapy, usually has a molecular rearrangement at chromosome band 11q23. The 11q23 translocation partner is typically at 4q21 in infant ALL, but other 11q23 translocation partners occur in infant ALL and AML. The MLL gene at 11q23, and the AF4 gene at 4q21, have been extensively studied to identify heterogeneity of structural rearrangement and prognostic indicators, to look for clues as to etiology, and to improve therapy.  相似文献   

13.
The ETV6 (TEL) locus at chromosome band 12p 13 is a major site of translocations in acute leukemia, particularly in childhood acute lymphoblastic leukemia (ALL). In cases with translocations involving ETV6, the normal ETV6 allele is often deleted. In addition, loss of heterozygosity of ETV6 is frequently observed in childhood'ALL. Thus, it has been suggested that ETV6 may have an anti-oncogenic role to play, in addition to its oncogenic role. We have described an unusual case of ALL in which ETV6 is found fused to the ABL gene; ABL is normally activated by fusion to the BCR gene in the 9:22 translocation. We expanded the primary cells from this ETV6/ABL rearranged case of ALL in SCID animals and analyzed them for expression of both ETV6/ABL and the normal ETV6 mRNA. We found that both the rearranged and normal ETV6 mRNAs are expressed in the expanded cell population. Furthermore, sequence analysis of the ETV6 PCR product revealed no point mutations which would influence the amino acid sequence. Thus, deletion of the second ETV6 allele is not necessary for the transformation to leukemia by ETV6/ABL.  相似文献   

14.
15.
The age boundaries and prognostic factors that define the infant leukemias are still controversial. We therefore analyzed event-free survival according to age group in 96 children treated for acute lymphoblastic leukemia (ALL) and 51 treated for acute myeloid leukemia (AML) before the age of 2 years. The study population was registered in consecutive institutional trials of multiagent chemotherapy conducted between 1980 and 1994. Among infants with ALL, event-free survival was significantly poorer in the 0- to 6-month-old group than in patients treated between 6 and 12 months of age (P = 0.03), whose outcome was in turn inferior to that in the 12- to 18-month and 18- to 24-month age groups (P = 0.013). Leukemic cells from ALL patients younger than 12 months had a significantly higher frequency of 11q23/MLL abnormalities, as well as better growth in stromal cell culture, compared to lymphoblasts from the older groups (P < 0.01). The only independent predictor of adverse prognosis among infants diagnosed with ALL before age 12 months was the presence of an 11q23/MLL rearrangement (P = 0.03). These findings contrast sharply with results for the AML cohort, whose event-free survival did not vary significantly by age group (P = 0.58). Male sex (P = 0.01) and leukocyte count > or = 50 x 10(9/l) (P = 0.04), but not 11q23 abnormalities, were independently associated with a poorer outcome for children with AML younger than 12 months at diagnosis. Thus, in very young children with ALL (but not AML), the rearrangement status of the 11q23/MLL region supersedes age group as a determinant of treatment outcome.  相似文献   

16.
17.
Translocation (12;21)(p13;q22) is a recently characterized aberration in acute lymphoblastic leukemia, and results in the fusion of the TEL and the AML1 genes. It is the most common translocation in pediatric acute lymphoblastic leukemia (ALL), occurring in about one third of the cases. To determine the frequency of TEL/AML1 in adult ALL, we studied 4 cases of T lineage ALL and 26 cases of B lineage ALL. Only one positive case was identified, giving a very low frequency of 3.3%. In this patient, TEL/AML1 was still detectable in complete hematologic remission. The apparent age predilection of t(12;21) warrants further investigations.  相似文献   

18.
19.
Gene rearrangements involving MLL (also known as ALL1, HRX, or Htrx) are among the most common molecular abnormalities associated with acute leukemia. These leukemias generally have one allele involved in a rearrangement, while the remaining allele is uninvolved and demonstrates a germline MLL configuration. In this study, we describe a leukemic cell line that does not have a germline MLL allele and thus cannot produce a normal MLL gene product. We show that the ML-1 cell line, derived from a patient with acute myeloid leukemia, has one allele involved in a t(6;11)(q27;q23), while the remaining MLL allele is deleted. Cloning of the genomic breakpoints on the derivative(6) and der(11) chromosomes demonstrated a balanced translocation between MLL on chromosome band 11q23 and AF6 on chromosome band 6q27. Sequence analysis of the derivative chromosomes revealed that a 186-bp segment of MLL intron 6, downstream of the breakpoint, had been duplicated, inverted, and inserted between MLL and AF6 on the der(11) chromosome. In light of the fact that ML-1 cells can be induced to differentiate along the granulocyte and macrophage lineages, the finding that ML-1 lacks a germline MLL allele demonstrates that a normal MLL gene is not required for survival, proliferation, or differentiation of this cell line.  相似文献   

20.
Cytogenetic and immunologic studies were performed on the cells of an 18-year-old female with ataxia telangiectasia (AT) associated with acute lymphocytic leukemia (ALL). At the onset of the leukemia 15.4% of peripheral blood cells stimulated with phytohemagglutinin (PHA) contained a tandem translocation of the long arm of chromosome #14, i.e., t(14;14). To ascertain if these karyotypically abnormal cells and the leukemic cells had a common lineage, chromosome analyses were performed on bone marrow cells. Examination of the marrow cells on the seven occasions when leukemic cells were present in the marrow, including times when they were predominant, showed only a normal karyotype without the presence of t(14;14). However, an abnormal clone, which had the karyotype 45,XX,-9,t(9;6)(q12;q13), was identified in the marrow cells on the last examination during the terminal phase of the leukemia. Immunologically, the ALL was classified as an atypical type which had characteristics in common with certain T-cell subsets. We suggest that the malignant cells did not originate from the preexisting cells with a tandem duplication of the 14q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号