首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adaptive control chart called Shewhart chart with variable sample size and sampling interval (VSSI) is quicker than Shewhart chart, chart with variable sample size (VSS), and chart with variable sampling interval (VSI) in detecting the mean shifts of a normal process. In practice, the effects of measurement errors on control charts should be included. In this study, we present an VSSI median control chart with estimated parameters in the presence of measurement errors for a normal process. The average time to signal (ATS) is computed by using the Markov chain approach. The results show that the VSSI median control chart performs better than the Shewhart median, VSS median, and VSI median control charts in terms of ATS. The design parameters of the proposed chart are provided. Two examples are used to illustrate the application of the proposed control chart.  相似文献   

2.
In this article, two adaptive multivariate charts, which combine the double sampling (DS) and variable sampling interval (VSI) features, called the adaptive multivariate double sampling variable sampling interval T2 (AMDSVSI T2) and the adaptive multivariate double sampling variable sampling interval combined T2 (AMDSVSIC T2) charts, are proposed. The real purpose of using the proposed charts is to provide flexibility by enabling the sampling interval length of the DS T2 chart to be varied so that the chart's sensitivity can be enhanced. The fundamental difference between the two proposed charts is that when a second sample is taken, the AMDSVSI T2 chart uses the information of the combined sample mean vectors while the AMDSVSIC T2 chart uses the information of the combined T2 statistics, in deciding about the process status. This research is motivated by existing combined DS and VSI charts in the literature, which show convincing performance improvement over the standard DS chart. Consequently, it is believed that adopting this existing approach in the multivariate case will enable superior multivariate DS charts to be proposed. Numerical results show that the proposed charts outperform the existing standard T2 and other adaptive multivariate charts, in detecting shifts in the mean vector, for the zero‐state and steady‐state cases. The performances of both charts when the shift sizes in the mean vector are unknown are also measured. The application of the AMDSVSI T2 chart is illustrated with an example.  相似文献   

3.
The standard Shewhart‐type chart, named FSS‐ chart, has been widely used to detect the mean shift of process by implementing fixed sample and sampling frequency schemes. The FSS‐ chart could be sensitive to the normality assumption and is inefficient to catch small or moderate shifts in the process mean. To monitor nonnormally distributed variables, Li et al [Commun Stat‐Theory Meth. 2014; 43(23):4908‐4924] extended the study of Tsai [Int J Reliab Qual Saf Eng. 2007; 14(1):49‐63] to provide a new skew‐normal FSS‐ (SN FSS‐ ) chart with exact control limits for the SN distribution. To enhance the sensitivity of the SN FSS‐ chart on detecting small or moderate mean shifts in the process, adaptive charts with variable sampling interval (VSI), variable sample size (VSS), and variable sample size and sampling interval (VSSI) are introduced for the SN distribution in this study. The proposed adaptive control charts include the normality adaptive charts as special cases. Simulation results show that all the proposed SN VSI‐ , SN VSS‐ , and SN VSSI‐ charts outperform the SN FSS‐ chart on detecting small or moderate shifts in the process mean. The impact of model misspecification on using the proposed adaptive charts and the sample size impact for using the FSS‐ chart to monitor the mean of SN data are also discussed. An example about single hue value in polarizer manufacturing process is used to illustrate the applications of the proposed adaptive charts.  相似文献   

4.
This article proposes an adaptive absolute cumulative sum chart (called the adaptive ACUSUM chart) for statistical process control. The new development includes the variable sampling interval (VSI), variable sample size (VSS) and VSS and interval (VSSI) versions, all of which are highly effective for monitoring the mean and variance of a variable x by inspecting the absolute sample shift (where μ0 is the in‐control mean or target value of x). While the adaptive ACUSUM chart is a straightforward extension of the ABS CUSUM chart developed by Wu, et al., it is much more effective than all other adaptive CUSUM charts. Noteworthily, the superiority of VSI ACUSUM chart over the best adaptive CUSUM chart in literature is about 35% from an overall viewpoint. Moreover, the design and implementation of the adaptive ACUSUM chart are much simpler than that of all other adaptive CUSUM schemes. All these desirable features of the adaptive ACUSUM chart may be attributable to the use of a single sample size (n = 1). Another quite interesting finding is that the simpler VSI ACUSUM chart works equally well as the more complicated VSSI ACUSUM chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
According to Shewhart, control charts are not very sensitive to small and moderate size process shifts that is why those are less likely to be effective in Phase II. So to monitor small or moderate size process shifts in Phase II, cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are considered as alternate of Shewhart control charts. In this paper, a Shewhart‐type control chart is proposed by using difference‐in‐difference estimator in order to detect moderate size shifts in process mean in Phase II. The performance of the proposed control chart is studied for known and unknown cases separately through a detailed simulation study. For the unknown case, instead of using reference samples of small sizes, large size reference sample(s) is used as we can see in some of nonparametric control chart articles. In an illustrative example, the proposed control charts are constructed for both known and unknown cases along with Shewhart ‐chart, classical EWMA, and CUSUM control charts. In this application, the proposed chart is found comprehensively better than not only Shewhart ‐chart but also EWMA and CUSUM control charts. By comparing average run length, the proposed control chart is found always better than Shewhart ‐chart and in general better than classical EWMA and CUSUM control charts when we have relatively higher values of correlation coefficients and detection of the moderate shifts in the process mean is concerned. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Recent studies show that Shewhart median ( ) chart is simpler than the Shewhart chart and it is robust against outliers, but it is often rather inefficient in detecting small or moderate process shifts. The statistical sensitivity of a Shewhart control chart can be improved by using supplementary Run Rules. In this paper, we propose the Phase II median Run Rules type control charts. A Markov chain methodology is used to evaluate the statistical performance of these charts. Moreover, the performance of proposed charts is investigated in the presence of a measurement errors and modelled by a linear covariate error model. An extensive numerical analysis with several tables and figures to show the statistical performance of the investigated charts is provided for both cases of measurement errors and no measurement errors. An example illustrates the use of these charts.  相似文献   

7.
Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the control chart, using the Downton statistic, performed better than Shewhart chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Control charts, based on ranked set sampling schemes, had been proposed recently for efficient monitoring of process location. All the proposals in the literature are based on the ideal assumption of normally distributed quality characteristics. No study as of yet investigated the performance of location charts based on ranked set sampling for non‐normal processes. In this study, we investigated the location chart based on simple random sampling (SRS) and three well‐known rank‐based schemes ie, ranked set sampling (RSS), median ranked set sampling (MRSS), and extreme ranked set sampling (ERSS), considering normal and a variety of non‐normal parent distributions. Both heavy‐tailed symmetric and skewed cases have been considered in this study. The performance of the charts is evaluated using average run length (ARL), extra quadratic loss (EQL), and relative ARL (RARL) measures. A real life example is also presented that details the monitoring of pH levels in water for an experiment conducted to study the reproduction of Mysids. The study will help quality practitioners to choose the chart based on an efficient sampling scheme for normal and non‐normal processes.  相似文献   

9.
In this paper, we propose 2 new exponentially weighted moving average (EWMA) control charts based on the moving average (MA) statistic and lnS2 to monitor the process mean and variability of a Weibull process with subgroups. The inverse error function is used to transform the Weibull‐distributed data to a standard normal distribution. The Markov chain approach is used to derive the average run length (ARL). Subsequently, the performances of the proposed charts with other existing control charts are provided. The comparison shows that the EWMA‐MA outperforms the and EWMA‐ control charts for monitoring the process mean of ARL values. The comparison also shows that the EWMA‐lnS2 outperforms the S2 and S2‐MA control charts for monitoring the process variability of ARL value. Two examples are used to illustrate the application of the proposed control charts.  相似文献   

10.
The performance of the variable sampling interval‐ (VSI‐ ) chart with estimated parameters has been investigated on the basis of the average time to signal (ATS) and standard deviation of time to signal (SDTS) in past research studies. Since the values of ATS and SDTS vary from practitioner to practitioner, the use of these 2 measures is not reliable. The use of different historical data sets in phase I results in varying parameter estimates, control limits, warning limits, ATS, and SDTS values. In this study, we use the standard deviation of average time to signal (SDATS) to evaluate and compare the performance of the VSI‐ chart with known parameters and estimated parameters. This study shows that variation reduction in ATS values requires a larger than previously recommended phase I data. Also, detection of up to moderate shifts in the process mean with the desired ATS value would be achievable with the number of samples recommended in the past, but the in‐control performance of the chart would not be reliable. Furthermore, we evaluate the effect of using large and small desired values of ATS0 on the performance of in‐control and out‐of‐control VSI‐ chart. We also study the effects of estimating the mean and standard deviation on the ATS values using numerical simulation. Finally, we present a method based on warning and control limits coefficients for the estimated parameters case to reduce the number of samples required in phase I.  相似文献   

11.
Estimation of unknown process parameters with fixed‐size samples are studied in the following. The standard textbook approach for phase I control chart implementation with a Shewhart control chart is evaluated for the case of normally distributed independent observations with random sampling. The charts are simultaneously implemented by generating observations that have a given percentage of randomly scattered out‐of‐control observations. Simulating the phase I steps, where out‐of‐control samples are detected iteratively by determining trial control limits, identifying samples exceeding these limits, and revising the control limits, the standard practice is evaluated in terms of both detection performance and quality of parameter estimates. It is shown that standard phase I control chart implementations with 3‐σ‐limits may perform very poorly in identifying true out‐of‐control observations and providing a reference set of in‐control observations for estimation in some practical settings. A chart design with 2‐σ‐limits is recommended for a successful phase I analysis.  相似文献   

12.
A control chart is a very common tool used to monitor the quality of business processes. An estimator of the process variability is generally considered to obtain the control limits of a chart when parameters of the process are unknown. Assuming Monte Carlo simulations, this paper first compares the efficiency of the various estimators of the process variability. Two empirical measures used to analyze the performance of control charts are defined. Results derived from various empirical studies reveal the existence of a linear relationship between the performance of the various estimators of the process variability and the performance of charts. The various Monte Carlo simulations are conducted under the assumption that the process is in both situations of in‐control and out‐of‐control. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The notion of variable warning limits is proposed for variable sample size and sampling interval (VSSI) charts. The basic purpose is to lower down the frequency of switches between the pairs of values of the sample sizes and sampling interval lengths of VSSI charts during their implementations. Expressions for performance measures for the variable sample size, sampling interval, and warning limits (VSSIWL) charts are developed. The performances of these charts are compared numerically with that of VSSI and VSSI (1, 3) charts, where VSSI (1, 3) charts are the VSSI charts with runs rule (1, 3) for switching between the pairs of values of sample sizes and sampling interval lengths. Runs rule (1, 3) greatly reduces the frequency of the switches; however, it slightly worsens the statistical performances of the VSSI charts in detecting moderate shifts in the process mean. It is observed that the out‐of‐control statistical performance and overall switching rate of VSSIWL charts are adaptive for the same in‐control statistical performances. These charts can be set to yield exactly similar performances as that of VSSI (1, 3) charts, to yield tradeoff performances between that of VSSI (1, 3) and VSSI charts, or to yield significantly lower switching rate than even that of VSSI (1, 3) charts at the cost of slightly inferior statistical performances than that of VSSI (1, 3) charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we proposed a new bivariate control chart denoted by based on the robust estimation as an alternative to the Hotelling's T2 control chart. The location vector and the variance‐covariance matrix for the new control chart are obtained using the sample median, the median absolute deviation from the sample median, and the comedian estimator. The performance of the proposed method in detecting outliers is evaluated and compared with the Hotelling's T2 method using a Monte‐Carlo simulation study. A numerical example is considered to illustrate the application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The steady‐state average run length is used to measure the performance of the recently proposed synthetic double sampling chart (synthetic DS chart). The overall performance of the DS chart in signaling process mean shifts of different magnitudes does not improve when it is integrated with the conforming run length chart, except when the integrated charts are designed to offer very high protection against false alarms, and the use of large samples is prohibitive. The synthetic chart signals when a second point falls beyond the control limits, no matter whether one of them falls above the centerline and the other falls below it; with the side‐sensitive feature, the synthetic chart does not signal when they fall on opposite sides of the centerline. We also investigated the steady‐state average run length of the side‐sensitive synthetic DS chart. With the side‐sensitive feature, the overall performance of the synthetic DS chart improves, but not enough to outperform the non‐synthetic DS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Classical statistical process control (SPC) by attributes is based on counts of nonconformities. However, process quality has greatly improved with respect to past decades, and the vast majority of samples taken from high‐quality processes do not exhibit defective units. Therefore, control charts by variables are the standard monitoring scheme employed. However, it is still possible to design an effective SPC scheme by attributes for such processes if the sample units are classified into categories such as ‘large’, ‘normal’, or ‘small’ according to limits that are different from the specification limits. Units classified as ‘large’ or ‘small’ will most likely still be conforming (within the specifications), but such a classification allows monitoring the process with attributes charts. In the case of dimensional quality characteristics, gages can be built for this purpose, making inspection quick and easy and reducing the risk of errors. We propose such a control chart, optimize it, compare its performance with the traditional and S charts and with another chart in the literature that is also based in classifying observations of continuous variables through gaging, and present a brief sensitivity analysis of its performance. The new chart is shown to be competitive with the use of –S charts, with the operational advantage of simpler, faster, and less costly inspection. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we present Shewhart‐type and S2 control charts for monitoring individual or joint shifts in the scale and shape parameters of a Weibull distributed process. The advantage of this method is its ease of use and flexibility for the case where the process distribution is Weibull, although the method can be applied to any distribution. We illustrate the performance of our method through simulation and the application through the use of an actual data set. Our results indicate that and S2 control charts perform well in detecting shifts in the scale and shape parameters. We also provide a guide that would enable a user to interpret out‐of‐control signals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Bayes‐conditional control chart has been used for monitoring the Weibull percentiles with complete data and type‐II censoring. Firstly, the Weibull data are transformed to the smallest extreme value (SEV) distribution. Secondly, the posterior median of quantiles is used as a monitoring statistic. Finally, a pivotal quantity based on the monitoring statistic with its conditional distribution function is derived for obtaining the control limits. This control chart is denoted as Shewhart‐SEV‐ . In this study, we extend this work based on an exponential weighted moving average model named exponential weighted moving average‐SEV‐ for monitoring the Weibull percentiles. We provide the statistical properties of the monitoring statistic. The average run length and the standard deviation of run lengths, computed by the integral equation approach, are used as performance measures. The results indicate that the proposed chart performs better than the Shewhart‐SEV‐ . The breaking strength of carbon fibers is used to illustrate the application of the proposed control chart.  相似文献   

19.
Variable sample size and sampling interval (VSSI) charts are substantially more efficient than are the static charts. However, the frequent switches between sample sizes and sampling interval lengths can be a complicating factor during the implementation of these charts. In this article, runs rules are proposed for switching between the sample sizes and the sampling interval lengths of these charts to reduce the frequency of switches. The expressions for the performance measures for the charts with these runs rules are developed. The methods presented are general and can be applied to other VSSI Shewhart control charts. The effects of different runs rules on the performances of the charts are compared numerically. The runs rules substantially reduce the frequency of switches. Some runs rules do not significantly alter the statistical performances of the charts; however, some adversely affect that in detecting large shifts in the process mean. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The performance of control charts can be adversely affected when based on parameter estimates instead of known in‐control parameters. Several studies have shown that a large number of phase I observations may be needed to achieve the desired in‐control statistical performance. However, practitioners use different phase I samples and thus different parameter estimates to construct their control limits. As a consequence, there would be in‐control average run length (ARL) variation between different practitioners. This kind of variation is important to consider when studying the performance of control charts with estimated parameters. Most of the previous literature has relied primarily on the expected value of the ARL (AARL) metric in studying the performance of control charts with estimated parameters. Some recent studies, however, considered the standard deviation of the ARL metric to study the performance of control charts. In this paper, the standard deviation of the ARL metric is used to study the in‐control and out‐of‐control performance of the adaptive exponentially weighted moving average (AEWMA) control chart. The performance of the AEWMA chart is then compared with that of the Shewhart and EWMA control charts. The simulation results show that the AEWMA chart might represent a good solution for practitioners to achieve a reasonable amount of ARL variation from the desired in‐control ARL performance. In addition, we apply a bootstrap‐based design approach that provides protection against frequent false alarms without deteriorating too much the out‐of‐control performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号