首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a need to develop effective stormwater filters for passive (without any addition of chemicals or energy) and effective removal of pathogens in order to mainstream stormwater harvesting. This study focuses on the development of coated granular activated carbon (GAC) filtration material in order to develop filters for effective removal of pathogens from urban stormwater. Several laboratory trials were performed to gauge the effectiveness of the filters, which use a mixture of the zinc-sulphate-heptahydrate coated GAC and sand, on the removal of Escherichia coli (E. coli) from semi-natural stormwater. On average, a 98% removal of the inflow concentration of E. coli was achieved. Furthermore, there was also an improvement of approximately 25% in the removal of phosphorous. However, it was found that the treated material was leaching zinc. It was important to determine whether the observed removal of E. coli was indirectly caused by the sampling methodology. The results showed that the inactivation of the E. coli in the collected sample was small compared with the inactivation which actually occurred within the filter. This provides much promise to the filter, but the presence of zinc in the outflow demonstrates the need for further investigation into the stabilisation of the coating process.  相似文献   

2.
This paper presents the results of the long term biofilter experiments conducted with raw stormwater collected from a canal at Carlton, in Sydney. Anthracite and granular activated carbon (GAC) were used as a single filter media in biofilter columns. Media heights of 75 and 40 cm were used. The filter columns were operated at filtration velocities of 0.12 and 0.25 m/h. The removal efficiency for turbidity and DOC for the GAC filter media were found to be 75% and almost 100% respectively. The removal efficiency for the anthracite filter was much lower. Molecular weight distribution analysis showed an almost similar trend to the DOC removal. Compared with anthracite filter media, the GAC biofilter removed a much larger range of organic compounds present in the stormwater. The GAC biofilter removes organic matter earlier as compared to anthracite. Based on a limited sample of stormwater, the removal efficiency for phosphorus was upto 74% and that of nitrogen was up to 30%. In general GAC filter shows higher heavy metal removal efficiency than anthracite. The removal of zinc, iron, lead and nickel were good. However the concentration of heavy metal in the raw surface water sample was low.  相似文献   

3.
Improved urban water management in Australia is of national importance. Water resources are stretched and urban runoff is a recognized leading cause of degradation of urban waterways. Stormwater recycling is an option that can contribute to easing these problems. Biofilters are effective structural stormwater pollution control measures with the potential for integration into stormwater treatment and recycling systems. However, premature clogging of biofilters is a major problem, with resulting decreased infiltration capacity (and hence the volume of stormwater the system can detain) and increased detention time. This paper presents preliminary findings with respect to the effect of clogging on pollutant removal efficiency in conventional stormwater filter media. A one-dimensional laboratory rig was used to investigate the impact of clogging on pollutant removal efficiency in a conventional biofiltration filter media (gravel over sand). Both the individual gravel layer and the overall multi-filter were highly efficient at removing suspended solids and particulate-associated pollutants. This removal efficiency was consistent, even as the filters became clogged. Removal of dissolved nutrients was more variable, with little reduction in concentrations overall. Although preliminary, these results challenge the concept that increased detention time improves the treatment performance of stormwater filtration systems.  相似文献   

4.
Biofiltration systems are becoming a popular stormwater treatment device in water sensitive urban design for the removal of fine particulate and dissolved pollutants from stormwater. However, there is limited published data on the effectiveness of these systems for nutrient removal. We constructed biofiltration mesocosms to assess nutrient removal (nitrogen, phosphorus and carbon) under experimental conditions. Different types of media were compared (gravel, sand, and sandy-loam) in vegetated and non-vegetated mesocosms (six treatments in total). Five plant species were used. Vegetated sand and vegetated sandy-loam provided the best overall treatment. Vegetated mesocosms were very effective in removing nitrogen (63-77% removal) and phosphorus (85-94% removal) from synthetic stormwater, and removed substantially more nutrients than the non-vegetated treatments. All treatments removed a substantial portion of the carbon from the stormwater (28-66%). When flushed with tap water, nitrogen and phosphorus were retained by the vegetated mesocosms, but leached from the non-vegetated mesocosms. Plant growth was most vigorous in the sandy-loam media, indicating that this is a good growth media, even without the addition of organic matter.  相似文献   

5.
In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.  相似文献   

6.
以水动力弥散理论为基础,在中国石油宁夏石化分公司炼油厂和废渣场各采取5组潜水含水层细砂岩心样,采用NaCl做示踪剂,进行室内一维沙柱弥散实验,以半无限含水层中污染物迁移模型的解析解计算了弥散度,并探讨了室内一维沙柱实验测定含水层弥散参数的误差来源,为地下水水质模型的建立提供基础。研究表明:炼油厂潜水含水层弥散度与废渣场潜水含水层弥散度基本接近。模型误差是对室内一维沙柱实验确定弥散参数产生影响最大的一类误差。目前,需加强银川平原大尺度含水层弥散特征的研究。  相似文献   

7.
Stormwater reuse: designing biofiltration systems for reliable treatment.   总被引:1,自引:0,他引:1  
Stormwater reuse is increasing in popularity as a technique for overcoming water shortages in urban Australia. However, technology for the reliable treatment of stormwater for reuse is still not fully developed. This paper presents the first steps in refining biofilters for stormwater reuse. Six different filter media were selected, to target specific stormwater pollutants, as well as support plant growth. They were tested in the laboratory, where the filters were dosed three times per week with semi-synthetic stormwater for five weeks. Pollutant removal performance was monitored, and revealed that all soil-based filters performed similarly (while sand filters behaved somewhat differently). All filters removed more than 80% of solids and greater than 90% of lead, copper, and zinc. Three filter types were able to remove some phosphorus (particularly in the top 30 cm of the media). Apart from sand, all filter media were net producers of nitrogen, leading to an important conclusion that non-vegetated, soil-based filters are not suitable for targeting nutrients. However, since heavy metals are the primary pollutant of concern with respect to stormwater reuse for irrigation (the most popular end-use), it was concluded that biofilters may be promising technologies for treatment of stormwater for reuse.  相似文献   

8.
An experimental study was undertaken by Monash University to develop and test enviss? stormwater treatment and harvesting technologies - non-vegetated filtration systems with an extremely low footprint. This paper focuses on the water quality and hydraulic performance of two systems tested over a 'year' of operation in a Melbourne climate: (1) REUSE enviss? filters, designed for stormwater harvesting systems for non-potable supply substitution, and (2) WSUD enviss? filters, developed to treat urban stormwater prior to discharge to downstream systems. The presence of chlorine as a disinfection agent proved to be very efficient for the removal of microorganisms in REUSE enviss? filters. WSUD enviss? filters had the benefit of providing an elevated nutrient treatment performance, due to an extended depth of filter media. However, nutrient outflow concentrations (total nitrogen (TN) in particular) were found to increase during the testing period. Also, extended dry weather periods were found to have a detrimental effect on the treatment performance of almost all pollutants for both filters (nutrients, Escherichia coli and heavy metals). Although hydraulic conductivity results indicated two or three sediment trap replacements per year are required to maintain filtration rates, it is expected that the compressed loading rate schedule overestimated this maintenance frequency.  相似文献   

9.
Sorption experiments were used to assess the ability of various materials (sand, compost, packing wood, ash, zeolite, recycled glass and Enviro-media) to remove heavy metal contaminants typically found in stormwater. Compost was found to have the best physicochemical properties for sorption of metal ions (Cu, Zn and Pb) compared with sand, packing wood, ash, zeolite and Enviro-media. The compost sorption of these metal ions conformed to the linear form of the Langmuir adsorption equation with the Langmuir constants (q,) for Zn(ll) being 11.2 mg/g at pH 5. However, compost was also found to leach a high concentration of dissolved organic carbon (DOC, 4.31 mg/g), compared with the other tested materials. Various combinations of sand, compost and other materials were observed to have excellent heavy metal removal (75-96% of Zn and 90-93% of Cu), with minimal DOC leaching (0.0013-2.43 mg/g). The sorption efficiency of the different Enviro-media mixes showed that a combination of traditional (sand) and alternative materials can be used as an effective medium for the treatment of dissolved metal contaminants commonly found in stormwater. The application of using recycled organic materials and other waste materials (such as recycled glass) also provides added value to the products life cycle.  相似文献   

10.
基于热示踪的饱和层状介质水热参数反演   总被引:3,自引:0,他引:3  
潘梦绮  黄权中  冯榕  黄冠华 《水利学报》2017,48(11):1363-1372
多孔介质的水热运移参数是影响介质中水热运动过程的主要因素。本文基于热示踪方法,开展了稳定流场条件下饱和层状石英砂的热示踪实验,分别采用热电偶与热成像两种方法测定了砂箱内部和表面的温度,同时结合HYDRUS模型的反问题算法对层状石英砂的水热运移参数进行了反演。研究结果表明:当介质中存在细粒夹层时,热成像图像能反映非均匀流场中热流峰面在分层界面处出现的"收束"现象;层状介质中的细颗粒夹层可导致热流锋面沿水流方向迁移速率下降、热量沿垂直于水流方向运移范围加大、温度分布更均匀。同时对于热源持续输入的系统,热成像温度在前期能较好的反映层状介质对水流运动的影响。将热示踪与HYDRUS模型相结合可较好地用于反演介质水热运移参数,反演所得的饱和导水率估值随粒径的减小显著降低,纵向热弥散度随粒径的减小而增大,而横向热弥散度变化趋势与之相反;纵横弥散比变化范围在10~120之间,且纵横弥散比随粒径减小而逐渐增大。对细砂饱和导水率的估计不足及热量损失是造成水流通量估计误差的主要原因,在模拟模型中增加细砂层测点数量可显著降低水流通量的估计误差。本研究可为非均质介质中水热迁移过程模拟与参数反演提供相应的方法。  相似文献   

11.
Hydraulic conductivity of granular filter media and its evolution over time is a key design parameter for stormwater filtration and infiltration systems that are now widely used in management of polluted urban runoff. In fact, clogging of filter media is recognised as the main limiting factor of these stormwater treatment systems. This paper focuses on the effect of stormwater characteristics on the clogging of stormwater filters. Effect of five different operational regimes has been tested in this study of sediment concentration; pollutant concentrations; stormwater sediment size; loading rate and stormwater loading/dosing regime and compared with the Base case. For each operational condition, five column replicates were tested. Results suggest that sediment concentration in stormwater is a significant parameter affecting hydraulic and treatment performance, eventually affecting longevity of these stormwater treatment systems. Further, the size of sediments (and their relation to the size of filter media grains) in stormwater was found to be an important parameter to be considered in design of coarse filters with high infiltration rates that are used for stormwater treatment. As expected, the addition of metals and nutrients had limited or no contribution to changes in hydraulic or sediment removal performance of the studied stormwater filters. Whilst loading rate was found to be an important parameter affecting the hydraulic and treatment performance of these systems, any variation in the stormwater loading regime had a limited effect on their performance. This study therefore develops an understanding of the effect of catchment characteristics on design of filters and hence their longevity and maintenance needs.  相似文献   

12.
Copper toxicity was examined in the Keweenaw Waterway and Gay region using in situ mortality tests. Daphnia pulex were placed in shell vials at thirteen field sites selected to encompass copper contamination from tailing piles to undisturbed shoreline environments. Likelihood Ratio Tests statistically compared mortality patterns between sites. In ponds on stamp sand piles, Daphnia survivorship was very low as dissolved copper concentrations greatly exceeded laboratory-derived LC50 values. Survivorship at shoreline stamp sand sites in Torch Lake, the most disturbed region, was also low, demonstrating a “halo” effect around shoreline piles. Survivorship was much better in Portage Lake and in wetland sites, probably because of lower Cu concentrations and organic complexing. Daphnia's ability to tolerate dissolved copper concentrations above laboratory LC50 values suggests that much of the dissolved copper in the Keweenaw Waterway is complexed and non-available. Non-bioavailable ratios (NRs) were determined by means of 96-hour EPA-protocol laboratory toxicity tests, and results were compared with laboratory copper ion tests. Although one site showed that seepage of humic-rich groundwater through stamp sands might enhance dissolved copper levels, in general the mean total copper levels found in the Keweenaw Waterway system were lower than reported 20 years ago, suggesting that the system is recovering from historic copper contamination.  相似文献   

13.
Source control by on-site retention and infiltration of stormwater is a sustainable and proven alternative to classical drainage methods. Unfortunately, sedimentary particles and pollutants from drained surfaces cause clogging and endanger soil and groundwater during long-term operation of infiltration devices. German water authorities recommend the use of infiltration devices, such as swales or swale-trench-systems. Direct infiltration by underground facilities, such as pipes, trenches or sinks, without pretreatment of runoff is generally not permitted. Problems occur with runoff from metal roofs, traffic areas and industrial sites. However, due to site limitations, underground systems are often the only feasible option. To overcome this situation, a pollution control pit was developed with a hydrodynamic separator and a multistage filter made of coated porous concrete. The system treats runoff at source and protects soil, groundwater and receiving waterways. Typically, more than 90% of the pollutants such as sedimentary particles, hydrocarbons and heavy metals can be removed. Filters have been developed to treat even higher polluted stormwater loads from metal roofs and industrial sites. The treatment process is based on sedimentation, filtration, adsorption and chemical precipitation. Sediments are trapped in a special chamber within the pit and can be removed easily. Other pollutants are captured in the concrete filter upstream of the sediment separator chamber. Filters can be easily replaced.  相似文献   

14.
雨洪水回灌过程中多分散颗粒造成的堵塞问题实质上是多孔介质中颗粒的运移和沉积。为了揭示饱和多孔介质中多分散颗粒的沉积特性,开展了5种不同浓度条件下多分散雨洪颗粒(0.375~55.82 μm)人工回灌一维砂柱定流量试验,基于胶体过滤理论,建立多分散颗粒运移-沉积的改进模型并进行相应的数值模拟。物理试验和数值模拟结果表明:不同浓度条件下多分散颗粒的沉积剖面都符合“上陡峭,下平缓”的超指数分布,而不是常规模型预测的指数分布。超指数分布是多分散颗粒的非均等沉积造成的,常规模型均化了沉积颗粒的空间分布,Kozeny-Carman模型可以模拟颗粒的非均等沉积造成介质不同位置渗透性能降低,介质的堵塞程度与颗粒大小直接相关,介质渗透性能最大降低为原来的52%,雨洪水中粒径>2.26 μm颗粒的沉积是造成堵塞的主要原因。  相似文献   

15.
Biofiltration systems are widely used to mitigate the impacts of stormwater on receiving waters, however their long-term capacity to retain heavy metals has not previously been assessed. Accelerated-dosing laboratory experiments were used to assess the likelihood of breakthrough occurring for three different types of soil-based filter media that are commonly used in stormwater biofilters. In all cases, breakthrough of zinc (Zn) was observed, but not of cadmium (Cd), copper (Cu) and lead (Pb). If biofiltration systems are sized so that they are large relative to their catchment (at least 2-3% of its area) or have a deep filter layer (at least 0.5 m deep), then breakthrough will not occur for at least ten years and probably longer. However, after the equivalent of 12-15 years of operation, Cd, Cu and Zn had accumulated in the filter media to levels that exceeded human health and/or ecological guidelines. Further, depending on the design, it is possible that spent filter media may be classified as contaminated soil and thus require special disposal.  相似文献   

16.
The pressurized dissolution method is often used for microbubble generation. However, the main disadvantage of this method is that a large amount of energy (more than 0.3 MPa) is required to generate many microbubbles, each of which have a diameter of several dozen μm. To overcome this problem, we investigated the effectiveness of porous ceramic when used as the packing material in the pressurized dissolution method. The results showed that when compared with the control (no porous ceramics), use of porous ceramics resulted in a 39% increase in the number of microbubbles. Furthermore, when this system was used for the flotation separation of artificial suspended solids and activated sludge, the level of separation achieved with porous ceramics at 0.15 MPa was the same as that achieved using no porous ceramics at 0.25 MPa. It was estimated that the use of porous ceramics led to a 40% reduction in the energy required for the dissolved air flotation, with subsequent decreases in the operating cost.  相似文献   

17.
Stormwater filters are widely used in stormwater management, sometimes as standalone structures (e.g. stormwater filter beds), or as part of porous pavements, soak ways, infiltration basins and trenches. Due to the high levels of sediment present in stormwater, clogging is the main operational issue for these systems. A laboratory-based study was conducted to investigate the effect of filter bed design variables on the clogging phenomenon in non-vegetated stormwater filters with high infiltration rates. Design parameters studied include: filter media particle sizes (0.5 mm, 2 mm, 5 mm); depth of the filter bed (100 mm, 300 mm and 500 mm); and filter media packing configurations (layered or mixed). The size of filter media particles significantly impact the clogging process, as well as the overall sediment removal performance of the filters; filters with smaller particles had better sediment removal efficiency, but subsequently shorter lifespan. Deeper systems had longer lifespan compared with shallower ones, notwithstanding deeper systems removed more sediment over their life span. Having two layers of distinct sized media in the filter bed improved performance (e.g. volume of water treated; sediment removed) over the single-layered systems. However, the three-layered systems behaved similarly to two-layered systems. Mixed systems also showed improved performance, as compared with single-layered systems, and were similar to the three-layered systems. This study therefore suggests that simple modifications to a stormwater filtration system can help improve sediment removal performance and/or reduce maintenance intervals significantly, while only slightly affecting sediment removal performance.  相似文献   

18.
It is considered that refractory dissolved organic substances have caused an increase in the COD concentration in Lake Biwa in recent years. We investigated the organic matter in the first flush of stormwater runoff from a road in the watershed area of the lake, and studied the possibility of improvement in the water environment from that aspect. After percolating the stormwater through soil, we analyzed organic substances fractionated by using GPC-TC. And we examined the effect of removal of organic substances by comparing the peak height before and after percolation. In the result of the experiments, we found that soil infiltration reduced the refractory dissolved organic substance and we successfully designed a system for a simple and easy experimental facility to treat urban runoff.  相似文献   

19.
20.
多孔介质中悬浮物迁移特性的研究,有利于减缓实际回灌工程中的堵塞问题,对地下水人工回灌技术的推广具有重要理论意义。采用室内砂柱试验,研究不同悬浮物浓度条件下多孔介质渗透性的变化、悬浮物颗粒在饱和多孔介质中的运移-沉积规律,并分析堵塞发生的机理。本次试验以中位粒径224.2μm的石英砂作为入渗介质并在砂柱中分别连续注入由中位粒径3.24μm的悬浮物颗粒配制而成的三组不同浓度溶液(100 mg·L~(-1)、300 mg·L~(-1)、500 mg·L~(-1))。研究结果表明,在不同的回灌浓度条件下,砂柱内均发生了表面-内部双重堵塞;且随着悬浮物溶液浓度的增加,悬浮颗粒在多孔介质内的迁移量减少,而滞留量却明显增多,但悬浮物浓度对沉积量的影响随着入渗深度的增加而减小;堵塞速率也会随着回灌液浓度的增加而加快;在回灌的初始阶段,多孔介质的渗透性随时间下降幅度很大,随着试验的进行,最终会趋于稳定状态,且越靠近砂柱表层,悬浮物堵塞的程度越为严重。在实际的人工回灌工程中,要尽可能降低回灌液中悬浮物颗粒的浓度,以降低堵塞的风险,保证回灌工程更为长久地运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号