首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe combined immunodeficient (scid) mice engrafted with small pieces of full thickness gut wall from immunocompetent syngenic donors develop a chronic and lethal colitis. Lymphocytes from the lamina propria of engrafted mice were analyzed for phorbol ester/ionomycin-induced cytokine production by intracellular staining. A 4-5-fold increase in the fraction of IFN-gamma-producing CD4+ lamina propria T cells was found in moderately and severely diseased mice when compared to healthy congenic C.B-17 control mice. The number of IL-2-producing T cells was increased by approximately 2-fold when comparing mice suffering from severe disease to healthy control mice. The fraction of TNF-alpha positive CD4+ T cells was increased by a factor of two in both moderately and severely diseased mice. When analyzing Th2 cytokines, it was found that the levels of IL-4-producing CD4+ T cells was not altered in diseased animals, whereas the fraction IL-10-producing CD4+ T cells was reduced by a factor of 20. The combined data showed a 15-25-fold increase in the Th1/Th2 ratio of diseased mice when compared to healthy control mice. No intracellular cytokines could be detected in lymphocytes not treated with phorbol ester/ionomycin. The present data identify a prominent role for Th1-type T helper cells in the immunopathogenesis of gut wall graft-induced inflammatory bowel disease in scid mice.  相似文献   

2.
Qualitative and quantitative changes in immune functions of different T-cell subsets associated with infection by human immunodeficiency virus type 1 (HIV-1) were analyzed by flow cytometric assessment of intracytoplasmic cytokines. The T(H)1 cytokines, interleukin-2 (IL-2) and interferon-gamma (IFN-gamma), were produced by both CD4 and CD8 T-cell subsets. When normal peripheral blood mononuclear cells (PBMC) were activated in culture, both cytokines were produced predominantly by CD4 (CD4) cell and only a minor fraction of normal CD8 cells produced these cytokines. In the cultures of PBMC from HIV-1-infected individuals (HIV+PBMC), more HIV+CD8 cells produced IL-2 and IFN-gamma. Production of IFN-gamma by HIV+CD4 cells was markedly reduced, while IL-2nd tumor necrosis factor-alpha (TNF-alpha) production by HIV+CD4 remained relatively intact until the disease progressed further. Normal CD4 cells which were isolated by using a cell sorter, FACSCalibur was still able to produce IL-2 and TNF-alpha. But for full production of IFN-gamma, normal CD4 required some accessory cells, the identity of which could not yet be established.  相似文献   

3.
HIV-infected dendritic cells (DC) efficiently transmit infection to CD4+ T cells during the process of T cell activation. To further understand interactions between DC and HIV, cytokine regulation of HIV coreceptors on cultured Langerhans cells (cLC, as prototypes of mature DC) was studied. Expression of cell surface CXCR4 on cLC was up-regulated by IL-4 and TGF-beta1 and inhibited by IFN-alpha, IFN-beta, and IFN-gamma, whereas cytokines did not appreciably regulate CCR5. Changes in cell surface CXCR4 expression on cLC correlated with T cell-tropic (X4)-HIV envelope-mediated syncytium formation and X4-HIV infection levels. A relative increase in the ratio of type 2/type 1 cytokine production, which can occur in HIV disease, may up-regulate CXCR4 expression on mature DC and promote infection by X4 viruses. Importantly, these findings suggest that cytokine dysregulation may be linked to the emergence of X4-HIV strains as HIV-infected individuals progress to AIDS.  相似文献   

4.
Although considerable attention has been paid to the development of cytokine synthesis heterogeneity during memory T cell differentiation, little information is available on how this function is coregulated with homing receptor expression. The development of skin-homing, CD4+ memory T cells in the human provides an excellent model for such investigation, since 1) the skin supports both Th1- and Th2-predominant responses in different settings, and 2) the skin-homing capability of human memory T cells correlates with and appears to depend on expression of the skin-selective homing receptor cutaneous lymphocyte-associated Ag (CLA). In this study, we used multiparameter FACS analysis to examine expression of CLA vs IFN-gamma, IL-4, and IL-2 synthesis capabilities among fresh peripheral blood CD4+ memory T cells, and Th1 vs Th2 memory T cells generated in vitro from purified CD4+ naive precursors by cyclic activation in polarizing culture conditions. Among normal peripheral blood T cells, CLA expression was essentially identical among the IFN-gamma- vs IL-4-producing CD4+ memory subsets, clearly indicating the existence of in vivo mechanisms capable of producing both Th1 vs Th2 skin-homing T cells. In vitro differentiation of naive CD4+ T cells confirmed the independent regulation of CLA and all three cytokines examined, regulation that allowed differential production of IFN-gamma-, IL-4-, and IL-2-producing, CLA+ memory subsets. These studies also 1) demonstrated differences in regulatory factor activity depending on the differentiation status of the responding cell, and 2) revealed CLA expression to be much more rapidly reversible on established memory cells than cytokine synthesis capabilities.  相似文献   

5.
The role of CD28/B7 and LFA-1/ICAM costimulation in proliferation and Th1/Th2 differentiation of naive CD4+ T cells was addressed using T cells from DO11.10 TCR transgenic mice stimulated by dendritic cells. The blockade of either CD28/B7 or LFA-1/ICAM interactions partially inhibited T cell proliferation. By comparison, blocking CD28/B7 costimulation inhibited IL-4 and IL-5 (Th2 cytokine) production, whereas blocking LFA-1/ICAM-1 or LFA-1/ICAM-2 led to a significant increase (15- to 40-fold) of Th2 cytokines. The combination of anti-ICAM-1 and anti-ICAM-2 mAbs had a synergistic effect with a 100- to 1000-fold increase of Th2 cytokine production. Thus, these two costimulatory pathways have opposing roles in the regulation of Th2 development.  相似文献   

6.
Peripheral blood cells from 29 patients with active Mycobacterium avium (MAC) or Mycobacterium tuberculosis diseases were tested for mycobacterial antigen-induced interferon (IFN)-gamma and interleukin (IL)-4 production. Among MAC patients, human immunodeficiency virus (HIV) infection was associated with an 80% decrease in those who produced IFN-gamma, resulting in a predominantly type 2 cytokine profile. HIV infection in patients with tuberculosis correlates with a 37% increase in those producing IL-4 and a type 1 to type 0 profile shift. These qualitative changes were independent of CD4+ or CD8+ cell numbers. The amounts of both IFN-gamma and IL-4 were decreased in the HIV-infected population. Quantitative reduction of IFN-gamma was the result of fewer secreting cells rather than a down-regulation at the single-cell level. Disseminated disease was restricted to 2 of 5 HIV-infected MAC patients with a type 2 cytokine profile and 4 of 5 HIV-infected tuberculosis patients with a type 0 profile. These results demonstrated a shift in mycobacterial antigen-specific cytokine profiles from type 1 to type 0 and to type 2, in parallel with AIDS progression.  相似文献   

7.
Direct killing of CD4+ lymphocytes by human immunodeficiency virus-1 (HIV-1) probably cannot account for the magnitude of the loss of these cells during the course of HIV-1 infection. Experimental evidence supports a pathophysiologic role of the apoptotic process in depletion of CD4 cells in acquired immunodeficiency syndrome (AIDS). The Fas-receptor/Fas-ligand (Fas-R/Fas-L) system mediates signals for apoptosis of susceptible lymphocytes and lympoblastoid cell lines. A number of investigators have recently reported increased expression of the Fas receptor in individuals with HIV infection, along with increased sensitivity of their lymphocytes to anti-Fas antibody mimicking Fas ligand. We attempted to determine the role of Fas-mediated apoptosis in disease progression and viral replication. Increased Fas-receptor (CD95) expression on CD4+ and CD8+ lymphocytes was found in a large group of HIV-1-infected patients compared with normal controls; individuals with a diagnosis of AIDS and a history of opportunistic infection had significantly more Fas receptor expression than did asymptomatic HIV-infected persons and normal blood donor controls (P < .01). Triggering of the Fas-R by agonistic anti-Fas monoclonal antibody, CH11, was preferentially associated with apoptosis in the CD4+ cells; this effect was more pronounced in lymphocytes derived from HIV+ individuals. Soluble and membrane-bound forms of Fas-L were produced in greater amounts in peripheral blood mononuclear cells (PBMC) cultures and in plasma obtained from HIV-1-infected persons than from normal controls. Furthermore, triggering of lymphocytes from HIV-infected persons by CH11 increased levels of interleukin-1beta converting enzyme (ICE), a protein associated with apoptosis. When PBMC were cultured in the presence of CH11, p24 production per number of viable cells was decreased as compared with the same PBMC without CH11 (P < .01). These findings suggest that multiple mechanisms, including increased production of Fas-L by infected PBMC, increased Fas-R expression, and induction of a protease of ICE family, may play roles in the apoptotic depletion of CD4+ cells in HIV infection.  相似文献   

8.
T cells express CD28 and CD27 which transduce co-stimulatory signals after interaction with their ligands on antigen-presenting cells (APC). These ligands, CD80, CD86 and CD70, are also expressed to some extent on activated T cells. Here, we show that in human immunodeficiency virus (HIV)-infected individuals, CD28 and CD27 expression is decreased on CD8+ T cells. On the other hand, T cell stimulation in vitro induced high CD80, CD86 and CD70 expression on T cells from HIV-infected individuals. It appeared that an inverted CD4:CD8 T cell ratio could explain this enhanced expression of co-stimulatory ligands. Indeed, high expression levels of CD80, CD86 and CD70 were found on activated CD8+ T cells from HIV- individuals cultured in the absence of CD4+ T cells. Addition of CD4+ T cells prevented this up-regulation. However, in HIV-infected individuals, addition of excess autologous or healthy control CD4+ T cells did not completely counteract up-regulation of co-stimulatory ligand expression on CD8+ T cells. Thus, to some extent, CD8+ T cells in HIV-infected individuals appeared to be refractory to CD4+ T cell-mediated regulation of ligand expression in vitro. Activated T cells from HIV-infected individuals and activated CD8+ T cells from healthy controls were able to act as accessory cells in CD3-induced T cell proliferation, which was dependent on cell-cell contact. Thus, we showed that T cells from HIV-infected individuals express enhanced levels of co-stimulatory ligands upon activation, which provides them with accessory cell properties. Enhanced stimulatory potential of these nonprofessional APC may contribute to persistently high levels of immune activation in HIV infection related to disease progression.  相似文献   

9.
Murine T-helper clones are classified into two distinct subsets (Th1 and Th2) on the basis of their patterns of lymphokine secretion. Th1 clones secrete interleukin-2 (IL-2), tumour necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), whereas Th2 clones secrete IL-4, IL-5 and IL-10 (ref. 1). These subsets are reciprocally regulated by IL-4, IL-10 and IFN-gamma and differentially promote antibody or delayed-type hypersensitivity responses. To evaluate whether IL-4 is required for mounting Th2 responses, we generated IL-4-mutant mice (IL-4-/-) and assessed the cytokine secretion pattern of T cells both from naive and Nippostrongylus brasiliensis infected mice. CD4+ T cells from naive IL-4-/- mice failed to produce Th2-derived cytokines after in vitro stimulation. The levels of Th2 cytokines IL-5, IL-9 and IL-10 from CD4+ T cells obtained after nematode infection were significantly reduced. The reduced IL-5 production in IL-4-/- mice correlated with reduced helminth-induced eosinophilia, which has been shown to be dependent on IL-5 in vivo. We conclude that IL-4 is required for the generation of the Th2-derived cytokines and that immune responses dependent on these cytokines are impaired.  相似文献   

10.
Cytokines are potent stimuli for CD4(+)-T-cell differentiation. Among them, interleukin-12 (IL-12) and IL-4 induce naive CD4(+) T cells to become T-helper 1 (Th1) or Th2 cells, respectively. In this study we found that macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains replicated more efficiently in IL-12-induced Th1-type cultures derived from normal CD4(+) T cells than did T-cell-line-tropic (T-tropic) strains. In contrast, T-tropic strains preferentially infected IL-4-induced Th2-type cultures derived from the same donor CD4(+) T cells. Additional studies using chimeric viruses demonstrated that the V3 region of HIV-1 gp120 was the principal determinant for efficiency of replication. Cell fusion analysis showed that cells expressing envelope protein from a T-tropic strain effectively fused with IL-4-induced Th2-type culture cells. Flow cytometric analysis showed that the level of CCR5 expression was higher on IL-12-induced Th1-type culture cells, whereas CXCR4 was highly expressed on IL-4-induced Th2-type culture cells, although a low level of CXCR4 expression was observed on IL-12-induced Th1-type culture cells. These results indicate that HIV-1 isolates exhibit differences in the ability to infect CD4(+)-T-cell subsets such as Th1 or Th2 cells and that this difference may partly correlate with the expression of particular chemokine receptors on these cells. The findings suggest that immunological conditions are one of the factors responsible for inducing selection of HIV-1 strains.  相似文献   

11.
12.
Recent studies have demonstrated that the beta-chemokines RANTES, MIP-1alpha, and MIP-1beta suppress human immunodeficiency virus type 1 (HIV-1) replication in vitro and may play an important role in protecting exposed but uninfected individuals from HIV-1 infection. However, levels of beta-chemokines in AIDS patients are comparable to and can exceed levels in nonprogressing individuals, indicating that global beta-chemokine production may have little effect on HIV-1 disease progression. We sought to clarify the role of beta-chemokines in nonprogressors and AIDS patients by examination of beta-chemokine production and HIV-1 infection in patient T-lymphocyte clones established by herpesvirus saimiri immortalization. Both CD4+ and CD8+ clones were established, and they resembled primary T cells in their phenotypes and expression of activated T-cell markers. CD4+ T-cell clones from all patients had normal levels of mRNA-encoding CCR5, a coreceptor for non-syncytium-inducing (NSI) HIV-1. CD4+ clones from nonprogressors and CD8+ clones from AIDS patients secreted high levels of RANTES, MIP1alpha, and MIP-1beta. In contrast, CD4+ clones from AIDS patients produced no RANTES and little or no MIP-1alpha or MIP-1beta. The infection of CD4+ clones with the NSI HIV-1 strain ADA revealed an inverse correlation to beta-chemokine production; clones from nonprogressors were poorly susceptible to ADA replication, but clones from AIDS patients were highly infectable. The resistance to ADA infection in CD4+ clones from nonprogressors could be partially reversed by treatment with anti-beta-chemokine antibodies. These results indicate that CD4+ cells can be protected against NSI-HIV-1 infection in culture through endogenously produced factors, including beta-chemokines, and that beta-chemokine production by CD4+, but not CD8+, T cells may constitute one mechanism of disease-free survival for HIV-1-infected individuals.  相似文献   

13.
Current clinical gene therapy protocols for the treatment of human immunodeficiency virus type 1 (HIV-1) infection often involve the ex vivo transduction and expansion of CD4+ T cells derived from HIV-positive patients at a late stage in their disease (CD4 count <400). These protocols involve the transduction of T cells by murine leukemia virus (MLV)-based vectors encoding antiviral constructs such as the rev m10 dominant negative mutant or a ribozyme directed against the CAP site of HIV-1 RNA. We examined the efficiency and stability of transduction of CD4+ T cells derived from HIV-infected patients at different stages in the progression of their disease, from seroconversion to AIDS. CD4+ T cells from HIV-positive patients and uninfected donors were transduced with MLV-based vectors encoding beta-galactosidase and an intracellular antibody directed against gp120 (sFv 105) or Tat. (sFvtat1-Ckappa). The expression of marker genes and the effects of the antiviral constructs were monitored in vitro in unselected transduced CD4+ T cells. Efficiency and stability of transduction varied during the course of HIV infection; CD4+ T cells derived from asymptomatic patients were transducible at higher efficiencies and stabilities than CD4+ T cells from patients with acquired immunodeficiency syndrome (AIDS). Expression of the anti-tat intracellular antibody was more effective at stably inhibiting HIV-1 replication in transduced cells from HIV-infected individuals than was sFv 105. The results of this study have important implications for the development of a clinically relevant gene therapy for the treatment of HIV-1 infection.  相似文献   

14.
Our present study provides evidence that the 4-1BB signal is critical to CD28 co-stimulation in maintaining T cell activation when CD28 has been down-regulated because of repeated stimulation. The 4-1BB signal synergized with CD28 co-stimulation by lowering the threshold of anti-CD28 required to sustain proliferation and IL-2 production. The 4-1BB signal also modulated CD28-mediated cytokine profiles by markedly enhancing Th1 but suppressing Th2-type cytokine production. The 4-1BB signal generated Th1-type cells, as identified by intracellular IFN-gamma production. IFN-gamma induction was detected preferentially in 4-1BB-expressing cells, but not in those expressing CD30. 4-1BB and CD30 were induced in both CD4+ and CD8+ cells, but the location of the two molecules was mutually exclusive in each T cell subset. Our study suggests that the 4-1BB signal regulates CD28 co-stimulation in the targeted subset cells to favor Th1 development and maintain long-term cell growth.  相似文献   

15.
The increased susceptibility of neonates to infections has been ascribed to the immaturity of their immune system. More particularly, T cell-dependent responses were shown to be biased towards a Th2 phenotype. Our studies on the in vitro maturation of umbilical cord blood T cells suggest that the Th2 bias of neonatal response cannot be simply ascribed to intrinsic properties of neonatal T cells. Phenotypically, neonatal CD4+ T cells are more immature than their adult CD45RO-/RA+ naive counterparts and they contain a subset (10-20%) of CD45RO-/RA+ CD31- cells which is very low in adults and displays some unique functional features. The activation and maturation of neonatal CD4+ T cells is particularly dependent upon the strength of CD28-mediated cosignal which dictates not only the cytokine profile released upon primary activation but also the response to IL-12. Activation of adult as well as neonatal CD4+ T cells in the context of low CD28 costimulation yields to the production of low levels of only one cytokine, i.e. IL-2. In contrast, strong CD28 costimulation supports the production of high levels of type 1 (IL-2, IFN gamma and TNF beta) and low levels of type 2 (IL-4 and IL-13) cytokines by neonatal T cells. The low levels of naive T cell-derived IL-4 are sufficient to support their development into high IL-4/IL-5 producers by an autocrine pathway. The ability of IL-12 to prime neonatal CD4+ T cells for increased production of IL-4 (in addition to IFN gamma) is observed only when CD28 cosignal is minimal. Under optimal activation conditions (i.e. with anti-CD3/B7.1 or allogenic dendritic cells) the response and the maturation of neonatal and adult naive T cells are similar. Thus the Th2 bias of neonatal immune response cannot be simply ascribed to obvious intrinsic T cell defect but rather to particular conditions of Ag presentation at priming. Unlike CD4+ T cells, neonatal CD8+ T cells strictly require exogenous IL-4 to develop into IL-4/IL-5 producers. Most importantly, anti-CD3/B7-activated neonatal CD8 T cells coexpress CD4 as well as CCR5 and CXCR4 and are susceptible to HIV-1 infection in vitro.  相似文献   

16.
Dendritic cells are the most relevant antigen-presenting cells (APC) for presentation of antigens administered in adjuvant to CD4+ T cells. Upon interaction with antigen-specific T cells, dendritic cells (DC) expressing appropriate peptide-MHC class II complexes secrete IL-12, a cytokine that drives Th1 cell development. To analyze the T cell-mediated regulation of IL-12 secretion by DC, we have examined their capacity to secrete IL-12 in response to stimulation by antigen-specific Th1 and Th2 DO11.10 TCR-transgenic cells. These cells do not differ either in TCR clonotype or CD40 ligand (CD40L) expression. Interaction with antigen-specific Th1, but not Th2 cells, induces IL-12 p40 and p75 secretion by DC. The induction of IL-12 production by Th1 cells does not depend on their IFN-gamma secretion, but requires direct cell-cell contact mediated by peptide/MHC class II-TCR and CD40-CD40L interactions. Th2 cells not only fail to induce IL-12 secretion, but they inhibit its induction by Th1 cells. Unlike stimulation by Th1, inhibition of IL-12 production by Th2 cells is mediated by soluble molecules, as demonstrated by transwell cultures. Among Th2-derived cytokines, IL-10, but not IL-4 inhibit Th1-driven IL-12 secretion. IL-10 produced by Th2 cells appears to be solely responsible for the inhibition of Th1 -induced IL-12 secretion, but it does not account for the failure of Th2 cells to induce IL-12 production by DC. Collectively, these results demonstrate that Th1 cells up-regulate IL-12 production by DC via IFN-gamma-independent cognate interaction, whereas this is inhibited by Th2-derived IL-10. The inhibition of Th1 -induced IL-12 production by Th2 cells with the same antigen specificity represents a novel mechanism driving the polarization of CD4+ T cell responses.  相似文献   

17.
18.
It remains controversial whether human T lymphotropic virus type I (HTLV-I) coinfection leads to more rapid progression of human immunodeficiency virus (HIV) disease in dually infected individuals. To investigate whether HTLV-I infection of certain cells can modulate HIV-1 infection of surrounding cells, primary CD4(+) T cells were treated with cell-free supernatants from HTLV-I-infected MT-2 cell cultures. The primary CD4+ T cells became resistant to macrophage (M)-tropic HIV-1 but highly susceptible to T cell (T)-tropic HIV-1. The CC chemokines RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta in the MT-2 cell supernatants were identified as the major suppressive factors for M-tropic HIV-1 as well as the enhancers of T-tropic HIV-1 infection, whereas soluble Tax protein increased susceptibility to both M- and T-tropic HIV-1. The effect of Tax or CC chemokines on T-tropic HIV-1 was mediated, at least in part, by increasing HIV Env-mediated fusogenicity. Our data suggest that the net effect of HTLV-I coinfection in HIV-infected individuals favors the transition from M- to T-tropic HIV phenotype, which is generally indicative of progressive HIV disease.  相似文献   

19.
T cell line-tropic (T-tropic) HIV type 1 strains enter cells by interacting with the cell-surface molecules CD4 and CXCR4. We have generated transgenic mice predominantly expressing human CD4 and CXCR4 on their CD4-positive T lymphocytes (CD4+ T cells). Their primary thymocytes are susceptible to T-tropic but not to macrophage-tropic HIV-1 infection in vitro, albeit with a viral antigen production less efficient than human peripheral blood mononuclear cells. Interestingly, even without HIV infection, transgenic mice display a CD4+ T cell depletion profile of peripheral blood reminiscent of that seen in AIDS patients. We demonstrate that CD4+ T cell trafficking in transgenic mice is biased toward bone marrow essentially due to CXCR4 overexpression, resulting in the severe loss of CD4+ T cells from circulating blood. Our data suggest that CXCR4 plays an important role in lymphocyte trafficking through tissues, especially between peripheral blood and bone marrow, participating in the regulation of lymphocyte homeostasis in these compartments. Based on these findings, we propose a hypothetical model in which the dual function of CXCR4 in HIV-1 infection and in lymphocyte trafficking may cooperatively induce progressive HIV-1 infection and CD4+ T cell decline in patients.  相似文献   

20.
The differentiation of CD4+ T cells into a Th1 vs Th2 phenotype profoundly influences the outcome of autoimmune and infectious diseases. B7 costimulation has been shown to affect the production of both Th1 and Th2 cytokines, depending on the system studied. There is, consequently, great interest in manipulating the B7 costimulatory signal for therapeutic purposes. To optimally manipulate this key immunoregulatory pathway, the contribution of B7 costimulation to cytokine production requires further clarification. We have compared the B7 requirement for cytokine production by naive vs previously activated T cells using DO11.10 TCR transgenic CD4+ T cells and splenic APCs from mice lacking B7 expression. Our data indicate that induction of IL-4 production and Th2 differentiation by naive T cells is highly dependent on B7 molecules, whereas IL-4 production by previously activated T cells is B7 independent. The predominant contribution of B7-mediated signals to Th1 cytokine production by both naive and primed T cells is upon IL-2 production (and expansion) rather than IFN-gamma (effector cytokine) production. Thus, our studies demonstrate that the antigenic experience of a T cell at the time of B7 blockade may determine whether blockade predominantly affects T cell expansion, differentiation, or effector cytokine production. These differential effects of B7 costimulation on IL-2 vs IFN-gamma production and on IL-4 production by naive vs primed T cells have important implications for understanding how B7:CD28/CTLA4 blockade can be effectively used to manipulate cytokine production in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号