首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a new radiating stub microstrip feed has been investigated with asymmetrical ground plane for generation of circular polarization (CP) in a dielectric resonator antenna (DRA). Here, asymmetrical ground plane and 3 radiating stubs with microstrip feed line are used for generation of 2 different modes namely TE11δ and TE12δ in rectangular DRA. By using mode matching concepts, these modes are responsible for enhancing the impedance bandwidth (TE12δ ie, and ) and axial ratio (AR) bandwidth (TE11δ ie, and ) in proposed antenna. Designed antenna offers measured input impedance bandwidth (|S11| < ?10 dB) and AR bandwidth (AR < 3‐dB) of 44.78%, ranging from 4.6 to 6.9 GHz and 23.32%, ranging from 4.6 to 6.9 GHz, respectively. It has been observed that proposed antenna shows left‐handed CP fields in boresight direction with average gain of 3.15 dBic and radiation efficiency of 90.54%. Designed antenna is suitable for Wi‐MAX (3.3‐3.7 GHz) applications.  相似文献   

2.
A single layer single probe‐fed wideband microstrip antenna is presented and investigated. By cutting a U‐slot in the rectangular patch, and by incorporating two identical U‐shaped parasitic patches around both the radiating edges and the nonradiating edges of the rectangular patch, three resonant frequencies are excited to form the wideband performance. Details of the antenna design is presented. The measured and simulated results are in good agreement, the measured impedance bandwidth is GHz ( GHz), or centered at GHz, which covers WLAN GHz ( GHz), WLAN GHz ( GHz), and WIMAX GHz ( GHz) bands. The measured peak gains at the three resonant frequencies are dB, dB, and dB, respectively. An equivalent circuit model which is based on the transmission line theory, the asymmetric coupled microstrip lines theory, and the π‐network theory is established. This equivalent circuit model is used to give an insight into the wideband mechanism of the proposed antenna, and is also used to explain why the three resonant frequencies shift at the variations of different parameters from a physical point of view. The error analysis is given to demonstrate the validity of the equivalent circuit model.  相似文献   

3.
A broadband polarization rotator for rotating linear polarization to every intended angle is introduced. The proposed rotator is constituted of frequency selective surface and enhanced substrate integrated waveguide (SIW) cavities. Considering the current distribution of circular or square SIW cavity dominant modes, two slots are inserted on the front and back surfaces of the enhanced SIW cavities where the arrows of distributed current are orthogonal to them. Accordingly, the angle between the input and output slots determines the amount of polarization rotation. Moreover, a method of cascading enhanced circular and square SIW cavities for the proposed structure is analyzed to produce a sharper roll‐off response in stop‐bands. Design and simulation of the proposed method are presented for , , and polarization rotators in Ka frequency band with 35 GHz central frequency. To verify the proposed method, a prototype of polarization rotator is fabricated and measured. The measurement demonstrates 18.8% bandwidth which proves broadband performance of the proposed structure.  相似文献   

4.
In this article, a coaxial probe fed wideband circularly polarized antenna has been designed and investigated using unequal and adjacent‐slided rectangular dielectric resonators radiating in broadside direction (Φ = 0°, θ = 0°). Wi‐Fi wireless network use radio signal either in 2.4 or 5 GHz band. Owing to high rush in 2.4 GHz band, the proposed antenna is designed for 5 GHz (5.15‐5.825 GHz) WLAN band. The proposed design uses fundamental orthogonal modes and excited in two individual rectangular dielectric resonators to achieve wide axial‐ratio bandwidth (below 3 dB). Measured input reflection coefficient (below ?10 dB) and axial ratio bandwidth (below 3 dB) of 26.07% (5.27‐6.85 GHz) and 26.85% (5.32‐6.97 GHz) has been attained, respectively, in this proposed antenna. The measured far‐field patterns such as gain and radiation patterns are showing consistent performance throughout the working band.  相似文献   

5.
In this article, a dual port aperture coupled MIMO cylindrical dielectric resonator antenna with enhanced isolation is proposed. Dual feeding techniques are used to excite dielectric resonator. These feeding structures are oriented in such a way so that they can produce orthogonal mode in the dielectric resonator. High isolation is observed by generating two orthogonal modes, that is, and in the dielectric resonator. The fractional bandwidth for port 1 and port 2 is 17.8% (3.1‐3.68 GHz) and 18.4% (3.1‐3.7 GHz), respectively, and isolation between the two ports exceeds ?25 dB within the required band. The proposed antenna is simulated, fabricated, and experimentally tested. Good agreements between measured and simulated results are observed. The various diversity performance parameters are also lie within their acceptable limits. Based on presented results, it can be concluded that the presented MIMO antenna is suitable for WiMAX (3.3‐3.6 GHz) applications.  相似文献   

6.
An expression of the thin‐slot formalism is presented to alleviate the gridding of the split‐field finite‐difference time‐domain (FDTD) solution for periodic structure. The varying auxiliary‐field ( , ) and split‐field ( , ) distributions near the slots are analytically derived from the varying field ( , ). The update equations for the split‐field FDTD are obtained by incorporating those varying field distributions into the split‐field equations in integral form. A frequency selective surface (FSS) structure is applied to verify the proposed method. The results indicate that the computational efficiency is improved.  相似文献   

7.
A novel wideband microstrip bandpass filter (BPF) based on a coupled‐stub loaded resonator (CSLR) is presented in this article. The CSLR is constructed by attaching one short‐circuited parallel coupled microstrip line (PCML) in shunt to a high impedance microstrip line. The filter bandwidth can be conveniently controlled via reasonable adjusting of the impedance of PCML. Moreover, new defected microstrip structures (DMSs) introduced in the PCML functions as a means of adjusting the positions of transmission zeros, created by the PCML. The resonant mode and transmission zero chart are given, indicating that the higher modes could be suppressed by the transmission zeros. Finally, to validate the proposed method, two wideband BPF filters with and without DMSs centered at 3 GHz with 3 dB fractional bandwidth of 87% are designed and fabricated. The measured results show that both the return losses are better than 15.8 dB, while the BPF with DMSs has a ?19.4 dB isolation wideband from 1.57 to 4.23 . The measured results are in excellent agreement with full‐wave electromagnetic simulation results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:122–128, 2015.  相似文献   

8.
In this article, the antenna partial gain to ‐factor based on the antenna current optimization is used as figure of merit for antenna design proposing an efficient global hybrid technique that combining very simple optimization (VSO) and Nelder‐Mead (NM) algorithm. To validate the strength of the approach, a set of three antennas operating within different frequency bands of super high frequency, submillimeter, and light spectrum are addressed and optimized. The antennas are analyzed completely using finite difference time domain method. The results showed the strength of the approach of optimizing antenna gain to ‐factor based on antenna current optimization using the hybrid VSO‐NM algorithm in different frequency bands. Compared to stand‐alone VSO, the hybrid VSO‐NM algorithm showed the ability to reduce the processing time on average by 58.73% in addition to enhancing the search capability by 43%.  相似文献   

9.
A novel stealth Vivaldi antenna with low radar cross section (RCS) is proposed in this article that covers the ultrawide band (UWB) from 2 to 12 GHz. As a special scatterer, the antenna can be responsible for the larger part of the total RCS of many military platforms. In this article, the configuration of the metal patch is modified, based on the difference of the current distribution while the antenna radiates and scatters. The monostatic radar cross section of proposed antenna is reduced in most parts of the band with polarized and polarized. Maximally 14 dBsm RCS reduction is achieved. The gain of the proposed antenna and reference antenna are in good agreement in most of the impedance bandwidth. Results are provided to demonstrate that the excellent radiation and perfect stealth performance is achieved. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:255–261, 2015.  相似文献   

10.
A novel structure combined of an I‐shaped microstrip line and eight slots etched from the ground plane is proposed to decouple both E‐plane and H‐plane antenna arrays. Five types of antenna arrays at 5.25 GHz with different linear placements are discussed for the first time and the decoupling structure is valid to them all. The edge‐to‐edge distances of the H‐plane arrays and the E‐plane arrays are 0.09 and 0.17 , respectively. Simulated and measured results indicate that the combined structure can effectively reduce the mutual coupling, with the maximum values reaching to 22.62, 28.41, 21.04, 22.33, and 26.04 dB for five types, respectively. The proposed structure is potential in the application of multielement arrays and communication MIMO system.  相似文献   

11.
In this article, a new A‐shaped dielectric resonator antenna (DRA) excited by a conformal strip is proposed for wideband applications. The wide bandwidth is achieved by combining two adjacent modes that is, TM101 and TM103. The experimental results demonstrate that the proposed DRA offers an impedance bandwidth (for S11?10 dB) of 59.7% (3.24‐6.0 GHz), covering IEEE 802.11 and U‐NII bands. The antenna provides a fairly stable radiation pattern with the gain ranging from 5.29 to 7 dBi across the operating bandwidth. A dual‐element multiple‐input multiple‐output (MIMO) system is also realized using the proposed wideband DRA. The impedance bandwidth of the dual‐element MIMO antenna is 59.2% and 60.9% for Port1 and Port2, respectively and the isolation between the ports is better than 20 dB across the bandwidth. For Port1, the gain of the MIMO antenna ranging from 6.03 to 7.45 dBi is obtained across the bandwidth. Furthermore, the diversity performance of the MIMO antenna is found to be good with envelope correlation coefficient below 0.003 over the operating band. The proposed antenna could be the potential candidate for worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN) and lower European UWB frequency band (3.4‐5.0 GHz) applications.  相似文献   

12.
In the present article, a compact triple‐band multistubs loaded resonator printed monopole antenna is proposed. The antenna consists of a quarter wavelength two asymmetrical inverted L‐shaped stubs to excite two resonant modes for 3.5/5.5 GHz bands and one integrated horizontally T‐shaped stub with inverted long L‐shaped stub to excite resonant mode for 2.5 GHz band. By loading these stub resonators along y‐axis with distinct gaps, the antenna resonates at three frequencies 2.57/3.52/5.51 GHz covering the desired bands while keeping compact size of 24 × 30 mm2 (0.2 × 0.25 ). The proposed antenna is fabricated on Rogers RT/duroid 5880 substrate with thickness 0.79 mm and its performance experimentally verified. The measured results reveal that the antenna has the impedance bandwidths of about 210 MHz (2.50‐2.71 GHz), 260 MHz (3.37‐3.63 GHz), and 650 MHz (5.20‐5.85 GHz), for 2.5/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz WLAN band systems. The antenna provides omnidirectional radiation patterns and flat antenna gains over the three operating bands. In addition, the design approach and effects of multistubs resonator lengths on the operating bands are also examined and discussed in detail.  相似文献   

13.
This article reports the simulated performance of rectangular coaxial ferrite phase shifter at Ka‐band. The proposed technique exploits rectangular coaxial waveguide with a symmetrically placed inner signal conductor inside an outer conductor connected to the ground. Strontium ferrite‐SU8 composite is used as an anisotropic material of choice in the modeled design. Two model phase shifting structures were designed for reciprocal and nonreciprocal applications using High Frequency Structure Simulator, HFSS. The reciprocal model produced a tunable phase shift of almost across 0 to 400 kA/m applied field and at 1800 Gauss. The predicted simulated performance of the nonreciprocal phase shifter was from a reference phase of at 0 A/m at the same saturation magnetization. A return loss better than 20 dB and an insertion loss less than 1.5 dB were predicted for the two models. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:502–509, 2015.  相似文献   

14.
In this article, a novel single layer, single‐fed ring antenna is analyzed for multiresonance operation in WLAN/Wi‐MAX bands. The antenna geometry consists of a square patch with a dual square ring enclosure which commit multiresonance characteristics. The antenna is excited using electromagnetically from a separate feed patch placed in between the rings. The impedance characteristics are enhanced up to 18% using a unique hourglass type feed patch in between the square rings. The suggested antenna exhibits good return loss at 2.45, 3.5, and 5.8 GHz having bore sight gain response of . Hybrid polarization is comprised with circular polarization and dual‐linear polarization characteristics are investigated in this research work. This antenna was implemented on Arlon's substrate with dielectric constant ?r = 2.55 and substrate thickness h = 1.524 mm. A good axial ratio is achieved with optimized corner truncation.  相似文献   

15.
This article presents a technique to enhance the broadside gain of a CPW fed slot antenna using a single layer metamaterial (MTM) superstrate. A finite array of 3 3 ring unit cell has been designed on both sides of a dielectric substrate to form the MTM superstrate. The gain enhancement is obtained using the zero‐index property of the metamaterial. The broadside gain enhancement for the proposed antenna is 7.4 dB more in comparison to that of the reference slot antenna. The proposed MTM superstrate loaded antenna provides a minimum overall thickness in the context of using ZIM superstrate for gain enhancement of antennas reported in earlier literatures. The overall thickness of the MTM loaded antenna is 0.13λ0, where λ0 is the free‐space wavelength at the resonance frequency of the antenna. Also, a high efficiency of about 93.2% is obtained in this case. The loading of the MTM superstrate produces a minimal effect on the cross polarization performance of the proposed slot antenna.  相似文献   

16.
A broadband dual‐polarized omnidirectional antenna is presented. The proposed antenna consists of two parts, an asymmetric biconical antenna and a cylindrical multilayer polarizer. To have an almost perfect omnidirectional radiation pattern in the horizontal plane and the main radiating beam position at around , in the elevation plane, the asymmetric biconical antenna is used. Moreover, to provide dual polarization performance over the 2–18 GHz operational bandwidth, a multilayer polarizer is designed and optimized. Numerous simulations via Ansoft HFSS and CST microwave Studio CAD tools have been made to optimize the radiation pattern, gain, polarization, and the reflection coefficient of the antenna. Simulation results show that the radiation characteristics of the proposed antenna are extremely sensitive to the configuration and dimensional parameters of the multilayer polarizer. The designed antenna was fabricated with high mechanical accuracy and measured. Satisfactory agreement of computer simulations and experimental results was obtained. The main feature that distinguishes this antenna from the previous designs is the ability to provide the omnidirectional radiation pattern with small ripples, dual polarizations performance, and the wide bandwidth simultaneously. Based on these characteristics, the proposed antenna can be useful for broadband communication applications. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:591–600, 2015.  相似文献   

17.
A reflector placed near a cellular telephone antenna is proposed to increase its radiation efficiency. In this study, a half wavelength dipole antenna at 900 MHz is treated as a cellular telephone model and a small plate reflector is placed between the antenna and a human head‐sized phantom model. By using the finite‐difference time‐domain (FDTD) method, various kinds of materials, such as a dielectric material, a magnetic material, and a conductive material, are investigated for the reflector composition. Among them, a magnetic reflector having high μ and low μ (complex relative permeability: μ−jμ) is shown to be effective for increasing the radiation efficiency. © 2000 John Wiley & Sons, Inc. Int J RF and Microwave CAE 10: 253–263, 2000.  相似文献   

18.
In this communication, triple band hybrid multi‐input–multi‐output (MIMO) cylindrical dielectric resonator antenna (CDRA) with high isolation is examined. The proposed MIMO antenna includes two symmetric folded microstrip line feeding structures along with CDRA at two different ends of substrate. Two inverted L‐shaped strips on the ground plane are used to enhance the isolation (S12 < ?15 dB) as well as to generates 2.7 GHz frequency band. Metallic strip on the ground plane act as an electromagnetic reflector and also enhance the isolation between two antennas (S12 < ?20 dB). Archetype of proposed MIMO antenna design has been fabricated and tested to validate the simulated results. The proposed antenna operates at three different frequency bands 2.24–2.38 GHz, 2.5–3.26 GHz, and 4.88–7.0 GHz (S11 < ?6 dB) with the fractional bandwidth 6.06%, 26.4%, and 35.7%, respectively. Folded microstrip lines generate path delay between the electric field lines and originate circular polarization characteristics in the frequency range 5.55–5.75 GHz with the fractional bandwidth of 3.55%. In order to satisfy the different performance requirement of MIMO antenna such as envelop correlation coefficient, mean effective gain, effective diversity gain, peak gain are also examined. The proposed antenna is found suitable for LTE2500, WLAN, and WiMAX applications. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2016.  相似文献   

19.
In recent years, neural networks have been successfully applied for modeling the nonlinear microwave devices as GaAs and GaN MESFETs/HEMTs. Many modeling approaches have been developed for small and large signal applications. In this contribution, a neuro‐space mapping approach is proposed for modeling the trapping and the self‐heating effects on GaAs and GaN devices. The Angelov empirical model is used as the coarse model, which can be adjusted using DC and Pulsed I/V measurements at different static bias points. The proposed approach is tested for the MGF1923 GaAs MESFET and for an AlGaN/GaN HEMT. DC and transient simulation results are compared to DC and Pulsed I/V measurements. Good results are obtained for the DC and dynamics I/V characteristics at different static bias points.  相似文献   

20.
Let be a simple graph with nodes and links, a subset of “terminals,” a vector , and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities . The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by . The general DCR computation belongs to the class of ‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号