首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, a novel wideband circularly polarized (CP) square-slot antenna with perturbation elements is proposed. The antenna comprises of an inverted L-shaped feeding line, pairs of corner cuts, a rectangular slot, and a semi-elliptical patch. The numerous CP resonant modes were excited simultaneously using these slots and patches as perturbation elements. To verify this concept, an antenna prototype was built and tested. The measured results indicate the ?10-dB impedance bandwidth (IBW) is 69.2% (2.42–4.98, 3.7 GHz) and 3-dB axial ratio bandwidth (ARBW) is 59% (2.58–4.74, 3.66 GHz). Furthermore, the measured peak gain is 4.3 dBi, and the gain variation within the certain bandwidth is less than 1 dB. Therefore, the presented antenna features wide CPBW and stable gain characteristics.  相似文献   

2.
In this research, we present a simple single fed small broadband circularly polarized (CP) antenna. The proposed structure has the advantage of simultaneously obtaining broadband ARBW and IMBW in a small size (0.64λ × 0.62λ × 0.01λ), where λ is the free‐space wavelength at the center frequency. The measured S11 BW is 100% (2.15‐6.44 GHz), which is completely overlapped by the measured ARBW of 108.7% (2.09‐7.07 GHz), which are wider than most published papers. The antenna consists of an off‐center microstrip feed line, an inverted rectangular bracket‐shape (IRBS) parasitic strip, and a modified ground plane. The modified ground plane has three linked slots and a protruded L‐shaped stub (LSS). The IRBS parasitic strip and the feed line are on one side of the substrate, whereas the ground plane is on the other side. The IRBS and LSS are overlaid up and down. The novelties of the structure are that the design mechanics is simple and clear as follows: (a) The three linked slots make the ground asymmetrical, and the asymmetrical ground makes the broadband IMBW in a small size preliminarily formed. Though the AR is around 8 dB, the fluctuation of AR inside the operation frequency band is little. (b) The off‐center feeding line, IRBS parasitic strip, and the LSS chain together through capacitance coupling, and the current path is formed, then the AR below 3 dB in the whole frequency band is generated. The peak gain and radiation efficiency are of 5.5 dBi and 95%, respectively. The proposed antenna is a good candidate for the application of various wireless communication systems, such as WLAN, WiMAX, and RFID.  相似文献   

3.
This letter presents the design of a broadband microstrip CP antenna using single‐fed technique. The feeding network is integrated within the coupling feed patch to simplify the structure. The proposed antenna is designed for Global Navigation satellite System (GNSS) operating at 1575.42 ± 10.23 MHz (GPS: L1 band), 1559~1592 MHz (Galileo: E2‐L1‐E1 band), 1602 ± 5.625 MHz (GLONASS: L1 band) and 1559.052~1591.788 MHz & 1610~1626.5 MHz (BeiDou Navigation Satellite System B1 and L band). Another advantage of this antenna is the much wider bandwidth in both VSWR and 3 dB axial‐ratio compared with traditional single‐fed CP antennas. Details of design, simulated and experimental results of this CP antenna are presented and discussed. The measured results confirm the validity of this design which meet the requirement of GNSS applications.  相似文献   

4.
In this article, a new low‐profile broadband circularly polarized antenna with a single‐layer metasurface is designed. The metasurface is composed of 4 × 4 rotated rectangle‐loops. Compared to single rotated rectangle, introducing inner‐cut rectangle slot can increase the design flexibilities by changing this slot size for wider circularly polarized operating bandwidth and reduce the size of the antenna in same frequency. The proposed antenna has the advantages of a wide 3‐dB axial ratio bandwidth from 5.4 to 6.05 GHz and an excellent 10‐dB impedance bandwidth from 5 to 6.05 GHz.  相似文献   

5.
A new broadband circularly polarized (CP) square‐slot antenna with low axial ratios is proposed in this article. The antenna is comprised of an L‐shaped microstrip line with tapered section and a square‐slot ground plane with some stubs and slots, which are utilized as perturbations for the desirable antenna performance. By loading stubs and slots in the square‐slot ground plane, the 2‐dB axial ratio bandwidth (ARBW) and 10‐dB return loss bandwidth for the presented antenna can be markedly improved. The measured results show that its 2‐dB ARBW is 4.2 GHz (54.2% from 5.65 GHz to 9.85 GHz) and its 10‐dB return loss bandwidth is about 8.9 GHz (92.7% from 5.15 GHz to 14.05 GHz). The proposed antenna features compact structure and broad 2‐AR bandwidth which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

6.
In this article, we present a new broadband CP square‐slot antenna with an inverted F‐shaped feed‐line. The antenna is composed of an inverted F‐shaped feed‐line, pairs of isosceles triangular chamfers, I‐shaped slots, rectangular slots and triangular patches, and a Z‐shaped strip. By introducing these strips and slots into the square‐slot, multiple CP modes can be stimulated simultaneously, which eventually enhances 3‐dB ARBW and 10‐dB impedance bandwidth (IBW) of the presented antenna. The measured results show that its IBW (|S11| < ?10 dB) is about 7.2 GHz (87.8% from 4.6 to 11.8 GHz) and its ARBW (AR < 3 dB) is 8.3 GHz (96% from 4.5 to 12.8 GHz).  相似文献   

7.
A novel broadband circularly polarized (CP) C‐shaped slot antenna fed by a coplanar waveguide is presented. The broadband CP operation can be achieved simply using a C‐shaped slot in the ground to produce orthogonal surface currents for left‐hand circular polarization. Using the semicircle‐shaped radiator patch, wide impedance bandwidth and broad axial‐ratio (AR) bandwidth can be obtained simultaneously. The measured results show that the proposed antenna can provide a 10‐dB impedance bandwidth of 105% from 2.78 to 8.92 GHz, and a 3‐dB AR bandwidth of 70.4% from 2.9 to 6.05 GHz. Finally, an antenna prototype with a reflector for unidirectional pattern applications is also developed. The proposed antenna has broader impedance and CP bandwidths but with a more compact size compared with the previous designs. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:739–746, 2015.  相似文献   

8.
In this article, a new broadband circularly polarized (CP) microstrip patch antenna (MPA) with a sequential phase (SP) square‐loop feeding structure is proposed. The presented antenna is composed of a square‐loop feeding structure, four L‐shaped parasitic patches with L‐shaped slots, four parasitic square patches, and a corner‐truncated square patch. At first, a SP square‐loop is designed as a feeding structure. Then, four L‐shaped parasitic patches with L‐shaped slots are utilized to generate one CP mode by a capacitive coupled way. At last, four parasitic square patches and a corner‐truncated square patch are together placed above the SP feeding structure to broaden the circularly polarized bandwidth (CPBW). The presented antenna has a wide 3‐dB axial ratio bandwidth (ARBW) of 16.7% (5.4 GHz, 4.95‐5.85 GHz), and a wide 10‐dB return loss bandwidth of 25.5% (5.5 GHz, 4.8‐6.2 GHz). The proposed antenna features compact structure and broad 3‐AR bandwidth which could completely cover the WLAN (5.725‐5.85GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

9.
In this article, a new wideband circularly polarized (CP) antenna is presented. The antenna is composed of a circular‐loop feeding structure which provides sequential phase (SP), four primary‐parasitic crown patches and four secondary‐parasitic crown patches. The circular‐loop SP structure is used to feed the two pairs of crown patches by a capacitively coupled way. The presented antenna features a wide 10‐dB impedance bandwidth (IBW) of 23% (6 GHz, 5.31‐6.69 GHz), and a wide 3‐dB axial ratio bandwidth (ARBW) of 11.1% (5.875 GHz, 5.55‐6.2 GHz). The proposed antenna features compact structure and broad 3 dB‐ARBW, which could include the WLAN (5.725‐5.85 GHz), ITS (5.8 GHz), and WIFI (5.85‐5.925 GHz) band.  相似文献   

10.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

11.
A wideband circularly polarized printed antenna is proposed and fabricated, which employs monofilar spiral stubs and a slit in the asymmetrical ground plane which are fed by an inverted L‐shaped microstrip feedline. The CP operation is realized by embedding an inverted‐L shaped strip and modified ground plane and can be markedly improved by loading monofilar spiral stubs asymmetrically connected at the edge of the ground plane. After optimization, the measured results of the finally structure demonstrate that a 10‐dB bandwidth of 67.6% from 4.6 to 9.3 GHz and a 3‐dB axial‐ratio bandwidth (ARBW) for circular polarization (CP) of 60.1% from 5 to 9.3 GHz could be achieved which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band. To explain the mechanism of broadband circular polarization operation, the analysis of magnetic fields distributions and a parametric study of the design are given. Compared to other recent works, a simpler structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna.  相似文献   

12.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band.  相似文献   

13.
A Z‐shaped dipole antenna with parasitic strips is proposed for wideband and unidirectional circular polarization operation in this article. The dipole arms are bent into L‐shape for circular polarization, and printed balun is used to achieve good impedance matching. To further extend the axial ratio bandwidth, two parasitic strips are employed to introduce an additional band of circularly polarized operation at the high frequency. Measured results demonstrate that the proposed antenna has a 10‐dB impedance bandwidth of 63.3% (1.64‐3.16 GHz) and a 3‐dB axial ratio bandwidth of 51.1% (1.72‐2.9 GHz). Stable radiation patterns with gain around 9 dBic along +z‐axis are also observed.  相似文献   

14.
A new antenna structure comprises of defected ground structure with hook‐shaped radiating patch designed for broad impedance bandwidth and axial ratio bandwidth is presented. In the proposed design, hook shaped radiating patch is orthogonally connected with printed strip patch and excited with 50Ω feed line at the upper side of the substrate. At the bottom side, a small rectangular slit is removed from the ground plane just underneath of radiating patch for better impedance matching along with broader bandwidth. The ground plane is defected by etching 3 symmetrical narrow slots for antenna compactness. The optimized antenna prototype is simulated, fabricated, and experimentally tested for far field and axial ratio performances in anechoic chamber. The measured results clearly show that it can yield an impedance bandwidth of approximately 27.60% centered at 2.17 GHz frequency and a 3‐dB AR bandwidth of approximately 25.20%. The measured gain range from 3 to 4.3 dBic in entire 3‐dB AR bandwidth with maximum gain of 4.30 dBic. The cross polar suppression was witnessed better than 15 dB along with wide beamwidth of 85°  相似文献   

15.
This paper presents a single‐feed wideband circularly polarized (CP) antenna with tapered crossed slots and corner directors. According to the multi‐mode resonance concept, the antenna uses two identical cross placed Vivaldi‐like tapered slots as the wideband radiating elements, and four rectangular parasitic patch directors are connected on each corner of the ground for further enhancing the bandwidth. A simple second‐order stepped microstrip line with a via on the other side of the substrate is used to feed the antenna. Two pairs of capacitors and inductors are placed on each slot to realize a 90° phase difference for CP operation. The proposed antenna is designed, fabricated and measured. Simulation results are in good agreement with the measured results that demonstrate a 10 dB impedance bandwidth (IMBW) from 1.98 to 5.71 GHz (3.73 GHz, 97.01%) and a 3 dB axial ratio bandwidth (ARBW) from 2.13 to 3.91 GHz (1.78 GHz, 58.94%). The antenna outperforms most of the reported cross slot antennas for its wide IMBW and ARBW.  相似文献   

16.
针对现有圆极化天线难以同时满足宽频带和小型化应用需求的问题,面向全球超高频射频识别(RFID)读写应用,采用新型功分移相馈电网络、旋转短路辐射贴片和耦合贴片、馈电探针和短路探针,设计了一种紧凑型宽频带圆极化射频识别天线。测试结果表明,该天线回波损耗大于15dB的相对带宽为59%,轴比小于3dB的相对带宽为34%,在全球超高频RFID频段范围内,天线辐射增益大于2.7dBi,辐射方向十分对称和稳定,其半功率波束宽度大于101°,适用于宽角度范围读写;与现有圆极化天线的性能指标和结构相比,该天线的工作频段不仅能够覆盖全球超高频RFID频段,而且结构紧凑,有利于RFID系统的低成本设计和实施。  相似文献   

17.
A broadband circularly polarized patch antenna with suspended structure is proposed. The suspended patch has a bow‐tie structure and a gap‐coupled feed. By connecting a resistor load to another gap‐coupled feed port at the opposite position, a wide impedance and axial ratio (AR) bandwidths are obtained. The proposed design has a very simple antenna structure with an impedance bandwidth of 44.5% and a 3‐dB AR bandwidth of 33.8%, respectively. The results show that the bandwidth of the patch antenna is successfully broadened using the suspended configuration, gap‐coupled feed, and resistor loading. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:587–593, 2014.  相似文献   

18.
A slot antenna with wideband circular polarization (CP) array, which operates on millimeter waves band, is proposed. A four‐direction sequential rotation technique is used in the feed network to feed the 2 × 2 slot element based on waveguide. The shot element resonates at both the fundamental mode and the high‐order mode. The slot element is studied in high order mode, and the radiation lobe can be redirected by changing the size of the slot element, thus improving the multi‐lobe problem. A strong single lobe is formed in the +z‐direction by using the ground edge diffraction characteristics of the slot element in the waveguide. The designed broadband characteristics are obtained through the appropriate combination of the feed network and CP antenna. The prototype of the antenna with an overall size of 137 mm × 137 mm × 0.6 mm3 is processed and verified by experiments. The prototype of the slot array is processed and examined. The test results display that the device has good performance of |S11| < ?10 dB bandwidth of 3.72 to 6.56 GHz (2.84 GHZ, 55.25%), a 3 dB axial ratio bandwidth of approximately 4.39 to 5.43 GHz (21.18%).  相似文献   

19.
A single‐layer dual‐band circularly polarized reflectarray antenna composed by split double rings for higher band and cross dipoles for lower band is presented in this letter. By adjusting the length of the cross dipole and rotation angle of split double ring, two classes of elements achieve the required reflection phase. Then, a reflectarray with these two types of elements is fabricated and tested. It is worth noting that the designed reflectarray obtains broadband performance at both bands. Measurement results demonstrate that the fabricated reflectarray obtains a 1 dB gain bandwidth of more than 14% for both bands and a 3 dB axial ratio bandwidth of 22.9% for the lower band and 40% for the upper band. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:364–369, 2015.  相似文献   

20.
The purpose of this study is to investigate the application of a polarization conversion meatasurface for constructing a low profile, wideband circularly polarized slot antenna, which consists of a new Polarization conversion metasurface (PCM)‐based square‐corner‐cut artificial magnetic conductor cell structure and a feeding slot antenna. PCM possesses two frequency points of polarization rotation (PR), produced by appropriately adjusting width between the two triangular metallic patches. A 39.3% (4.7‐7 GHz) of big PR band was realized through the combination of two neighboring PR frequency points. The impedance bandwidth of PCM based patch antenna was measured to be 43.5% (4.5‐7 GHz), with 17.2% (5.3‐6.3 GHz) of 3 dB axial ratio (AR) bandwidth and 0.045λ0 of profile. It also generated 7.3 dBic of high broadside gain in operational bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号