首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a novel dual‐band differential bandpass filter using (SIRs) is designed. To demonstrate the design ideas, the differential and common mode equivalent half circuits are built and studied. Two resistors are connected between the two ends of the SIRs to consume the power in common mode. A capacitor is connected between the Ground and Center of the SIR to adjust the spurious frequencies, also strength the coupling of the two SIRs. The theoretical analysis shows the second band can be obtained by the proper impedance ratios of the resonances and the capacitor connected to the resonator. Two through ground vias (TGVs) connecting the top and bottom sides of the SIR filter, are used to realize the common mode rejection. To investigate the proposed filter in detail, a set of design equations are derived based on the circuit theory and transmission line theory. A phototype dual‐band differential filter operating at 1.5 and 2.75 GHz has been realized to validate the proposed concept and theory. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:468–473, 2015.  相似文献   

2.
Two dual‐band band pass filters (BPF) using stub‐loaded open‐loop (SLOL) resonator are presented in this article. A novel coupling tuning method by changing the relative coupling position of the resonators is proposed to control the bandwidth of each passband in a wide range. Transmission zeros are created to improve the selectivity by source‐load coupling. Because of the large ratio of two bandwidths, a novel dual‐band matching method is proposed to match the different load impedances at two passband frequencies to the same source impedance. Hence, relax the fabrication requirement of gap. The proposed dual‐band band pass filter is designed and fabricated. The measured 3 dB fractional bandwidths (FBWs) of two 2.45/5.25 GHz dual‐band BPFs are 6.5%/14.5% and 9.8%/5.5%, respectively. The results are in good agreement with the simulation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:367–374, 2014.  相似文献   

3.
A compact, band‐pass filter utilizing multi‐element resonators, structured from sections of distributed transmission lines, is presented. A band‐pass filter design procedure is established that emphasizes CAD techniques to characterize the individual resonators and to determine the resonator coupling values required for a specified pass‐band response. Detailed band‐pass filter design examples are illustrated and simulation results are employed to validate the design procedure. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13, 447–458, 2003.  相似文献   

4.
In this article, compact quad‐band band‐pass filters are realized by using stepped‐impedance coupled‐line quad‐mode resonators (SICLQMRs). The compactness of the quad‐mode resonator relies in its folded structure without extra space between the parallel lines. Unlike stepped‐impedance resonators, SICLQMRs provide more design freedoms for controlling the four resonating frequencies since the even‐ and odd‐mode equivalents can be separately assigned with characteristic impedances. Internal and external couplings are also parallel couplings, resulting in very compact dimensions of the filters. Simulated and measured S parameters are compared with good agreement, demonstrating the feasibility of the design.  相似文献   

5.
This article discusses a technique based on combination of multimode resonators (MMR) and complementary split ring resonators (CSRR) to design multi notch‐bands ultra wide‐band (UWB) band‐pass filters (BPF). The proposed structure consists of two parallel multimode resonators, resulting in a dual notch‐band UWB BPF, integrated with a single cell of CSRR to realize the third notch‐band. The mechanism of realizing the notch‐bands is mathematically presented and a triple notch‐bands UWB BPF is designed, simulated and fabricated. The overall size of the proposed filter is reported to be around 36 × 7.7 mm2 where a size reduction of around 35% is demonstrated in comparison to the conventional filter. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:375–381, 2014.  相似文献   

6.
A millimeter‐wave ultrawideband two‐way switch filter module is presented in this article. The switch filter module covers whole Ka‐band (26–40 GHz), and is composed of two wideband band‐pass filters and two monolithic microwave integrated circuit (MMIC) single pole two throw (SP2T) switches. One filter is realized using E‐plane iris waveguide band‐pass filter, and another is realized by a novel 11‐pole three‐line microstrip structure band‐pass filter. Compared with the traditional three‐line filter, the proposed three‐line filter not only retains virtues of the traditional three‐line filter, but also resolves drawbacks of it, which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 51 × 26 × 9.8 mm3, and interconnections between MMICs and microstrip are established by bond wires. The fabricated switch filter module exhibits excellent performances: for two different states, the measured insertion loss and return loss are all better than 7 and 10 dB in each pass‐band, respectively. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:305–310, 2015.  相似文献   

7.
This article proposes a microstrip dual‐band bandpass filter that uses parallel‐connected open‐loop ring resonators. Compared to many microstrip dual‐band filters, the advantages of using microstrip open‐loop ring resonators are easy calculation (half‐guided‐wavelength), easy fabrication (equal width for all 50‐Ω lines and without grounding holes), and direct connection to external feed lines (reducing insertion loss caused by gap couplings). Another advantage of the filter is an asymmetrical feed on the ring resonator that provides sharp rejections at its adjacent bands. The input and output matches of resonators to the external feed lines are derived using a simple transmission‐line theory. The results of the derivation provide a simple design rule for filter designers. Simulated and measured results are presented with good agreement. The filter has minimum insertion loss of 1.25 dB at 1.85 GHz and 1.6 dB at 2.33 GHz. The 3‐dB fractional bandwidths are 5.9% for the 1.9‐GHz bandpass filter and 4.7% for the 2.4‐GHz bandpass filter, respectively. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

8.
In this article, interdigital capacitor loaded co‐directional split ring resonators (CDSRRs) and their dual‐band bandpass filter applications are proposed. The proposed resonator is formed by nested open loop resonators having open ends at the same place unlike conventional split ring resonators (SRRs). In addition, the inner open loop resonator has interdigital capacitor located between the open ends. The proposed resonator exhibits dual resonance behavior with a small center frequency ratio. Both of resonance frequencies can be controlled due to the changes in the interdigital capacitor and the electrical length of the outer resonator. A dual‐band microstrip bandpass filter is designed by using the proposed CDSRR. Two CDSRRs are used to obtain two poles in each passband. Overall electrical length of the designed filter is 0.23 λg × 0.14 λg (0.0329 λg2), where λg is the guided wavelength for the used substrate at the lowest passband center frequency of 1.8 GHz. A small center frequency is obtained by adjusting the second passband at 2.27 GHz. A very wide upper stopband, closely spaced passbands, low insertion losses and high selectivity at both passbands can be obtained by means of the proposed structure. The designed filter was also fabricated and tested. The measured results show a very good agreement with the predicted results.  相似文献   

9.
Four‐stage stepped‐impedance resonator (FSSIR) is proposed and its resonant characteristics are analyzed in detail. The formulas of the first four resonances are deduced and the optimization techniques are presented on the basis of the impedance ratios. A quad‐band bandpass filter with third‐order filtering response in each passband is synthesized and designed as a demonstration of the application of the proposed FSSIR. Thanks to the cross‐coupling topology and skew‐symmetrical feeding configuration, multiple transmission zeros have been generated out of the passbands. Additionally, the frequency and the couplings of each passband can be flexibly controlled, respectively.  相似文献   

10.
A novel dual‐mode optimized patch capacitor loaded T‐type resonator is proposed for the design of a dual‐band filter (DBF). The resonator has its lowest even‐ and odd‐mode at the two expected passband frequencies and the first spurious mode far away from the passbands. For tuning of the two sets of coupling strengths for both passbands, open/shorted secondary coupling structures are introduced as a fine‐tuning coupling structure to increase/decrease the primary coupling strength. A four‐pole DBF with passbands centered at 2450 and 3500 MHz, respectively, is proposed and fabricated using the HTS material. The measured results of the filter indicate superior performance and good fitting with the simulation results. The return losses of both passbands and the insertion losses obtained by measurements are greater than 14 dB and less than 0.3 dB, respectively. The stopband rejection exceeds 50 dB up to 8.0 GHz.  相似文献   

11.
Two novel dual‐band microstrip bandpass filters (BPFs) with multiple transmission zeros are proposed in this article. The dual‐band BPFs with second‐order bandpass responses are due to two λ/4 stepped‐impedance resonators (SIRs). Two passbands (center frequency ratio f s/f0 is 2.36) are realized based on the asymmetric SIRs. The transmission zeros near the passbands can be adjusted conveniently using the stopband transmission characteristic of the open/shorted coupled lines. Two planar microstrip dual‐band BPFs (ε r = 2.65, h = 0.5 mm) with four and six transmission zeros are designed and fabricated. High selectivity and good in‐band performances can be achieved in the proposed filters.  相似文献   

12.
A novel compact dual‐band bandpass filter based on multilayer folded‐waveguide (FWG) structure is presented in this article.In this design, slots are used to realize direct coupling between adjacent resonators and apertures are adopted to implement cross coupling between non‐adjacent resonators.A new technique of external quality factor of FWG resonator and coupling coefficients between different resonators are studied using full‐wave simulator. In order to demonstrate the proposed technique, a four‐pole dual‐band bandpass filter is designed, fabricated and measured using vector network analyzer. Measurement results which are well agreed with simulation results are presented. Moreover, four‐pole substrate integrated folded waveguide SIFW dual‐band bandpass filter, using two layers of slotted folded waveguide resonators, is demonstrated. The proposed filter has a compact size and it is excellent candidate for the application of wireless communication systems. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:780–788, 2015.  相似文献   

13.
In this article, a new class of dual‐/tri‐band and ultra‐wideband (UWB) bandpass filters (BPFs) using novel multi‐mode resonators are proposed. The classical even‐/odd‐mode method is applied to analyze the resonant characteristics of the proposed resonators, which exhibit controllable resonant modes with different dimension parameters under the same configuration. According to the analysis, three resonators with quad‐/penta‐/sext‐mode resonant characteristics are obtained by choosing the specific dimension parameters. Then, the quad‐mode resonator is used to design a dual‐wideband BPF centred at 2.39/5.14 GHz with 3‐dB fractional bandwidths (FBWs) of 36.9%/18.9%, and the penta‐mode resonator is utilized to design an UWB BPF with 3‐dB FBW of 102.2%, whereas the sext‐mode resonator is applied to design a tri‐band BPF with centre frequencies of 2.09/3.52/5.46 GHz and 3‐dB FBWs of 11.3%/20%/12.1%. All these three filters are fabricated and measured, and the measured results are in good agreement with the simulated ones.  相似文献   

14.
In this article, a quadruple‐mode stub‐loaded resonator (QM‐SLR) is introduced and its four modes are excited using a simple approach, which can provide a dual‐band behavior. By changing the length of the loaded stubs, independently tunable transmission characteristics of the proposed quadruple‐mode stub‐loaded resonator were extensively described for filter design. Moreover, microwave varactors were adopted to represent the length variation of the loaded stubs for the dual‐band tunability. The equivalent circuit modeling of the open stub with microwave varactor was given and discussed. Then, adopting the compact quadruple‐mode stub‐loaded resonator with three varactors, an independently controllable dual‐band bandpass filter (BPF) was designed, analyzed, and fabricated. Its separated bandwidths and transmission zeros can be tuned independently by changing the applying voltage of the microwave varactors. A good agreement between simulated and measured results verified the design methodology. The proposed filter possesses compact size, simple structure, and excellent dual‐band performances. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:602–608, 2016.  相似文献   

15.
A pair of dual mode independent controllable resonators used to realize dual band pass filter with good frequency selectivity and isolation is presented. The resonators are directly connected to input/output and are coupled through electric and magnetic coupling in two different paths. Magnetic coupling between the resonators is achieved using a common grounded via‐hole between the two set of quarter‐wavelength resonators. Electric coupling is achieved through open edge coupling of the resonators. Two independent resonators with Separate Electric and Magnetic Coupling (SEMC) paths produce an independently controllable dual band filter response and also additional transmission zeros (TZs) at the edges of the pass bands. The TZs are introduced to improve the selectivity of the filter. Filter exhibits desired pass band response at the Universal Mobile Telecommunications System (UMTS) band (1.95‐2.2 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) band (3.4‐3.6 GHz). Proposed compact filter is implemented on RT/Duroid 5880 (εr = 2.2) substrate with thickness of 0.785 mm and surface area of 15 × 12 sq. mm.  相似文献   

16.
This article designed a five‐order narrow‐band tunable superconducting filter. The superconducting microstrip circuit was loaded by varactors diode. The center frequency of the tunable can be tuned through the changing of the bias voltage added in the varactors diode. The whole device has a parallel coupling structure and the filter circuit was fabricated by DyBa2Cu3O7 superconducting film with 0.5 mm thickness and 2 in. LaAlO3 as the substrate. The frequency can be continuously adjusted from 235 MHz to 250 MHz. The insertion loss of the filter was in the range of 2.51 dB to 9.64 dB. The bandwidth of the tunable filter was in the range of 0.5 MHz to 0.9 MHz. The out‐of‐band rejection was better than 70 dB. The measured results are in good agreement with the simulated ones.  相似文献   

17.
This article proposes a novel bandpass filter with two controllable passbands using a single quad‐mode silver‐loaded dielectric resonator (DR). The silver plane is inserted in the middle of the cubic DR and two degenerate pairs are used to build the two passbands. Because of the distinct E‐field distributions, the silver plane has significant effect on the degenerate pair (TEx112 and TEy112), whereas another one (TEx111 and TEy111) remains unchanged. With the aid of the silver plane, both center frequencies and bandwidths of the two bands can be controlled independently. To verify the proposed idea, a prototype dual‐band BPF is designed and fabricated. Good agreement between simulated and measured results can be observed.  相似文献   

18.
An elliptical function low‐pass filter (LPF) with ultra wide stopband and sharp cutoff frequency is proposed. This filter is composed of symmetrical cascaded modified hairpin resonators and U‐shaped resonators. The transition band is from 1 to 1.21 GHz with ?3 and ?20 dB, respectively. For this filter, the return loss is better than 17 dB in 80% of passband width, where the insertion loss is less than 0.3 dB. The band‐stop rejection is greater than 20 dB from 1.21 to 26.35 GHz and 40 dB from 1.35 to 12.5 GHz. To validate the design and analysis, the proposed LPF has been designed and fabricated on a 20 mil thick RO4003 substrate with a relative dielectric constant 3.38 and loss tangent of 0.0021. The filter is evaluated by experiment and simulation with a good agreement. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:314–321, 2014.  相似文献   

19.
In this article, a compact dual‐band crossover using dual‐mode ring resonators by Coplanar‐Waveguide (CPW)‐Fed scheme is proposed. It contains 2 homocentric square ring resonators on the top layer to obtain the dual‐band responses. CPW feeding lines and open stubs are placed on the bottom layer to feed the ring resonators and adjust coupled strength. The center frequencies and bandwidths for each passband can be individually controlled easily. To prove the design concept, a compact dual‐band crossover operated at 1.57 and 2.45 GHz is designed and fabricated. The measured results show good agreement with the simulation ones results a wide frequency range.  相似文献   

20.
A novel half‐mode substrate integrated waveguide (HMSIW) based dual‐band bandpass filter (DBBPF) is proposed. Back to back connected two defected ground structure (DGS) resonators on the top layer of HMSIW cavity constitute the passband with two transmission zeros (TZs) at a lower frequency. The higher modes TE301 and TE302 of HMSIW cavity give the passband response at higher frequency using the mode shifting technique with slot perturbation. The source‐load coupling has been used to create finite frequency TZs to improve the selectivity of the second passband. Therefore, the proposed filter gives two widely separated passbands, center frequencies (CFs) at 5.83 and 18.1 GHz with an attenuation of greater than 10 dB between the passbands. The synthesized filter is fabricated using a low‐cost single layer PCB process, and the measured S‐parameters are almost mimic the EM‐simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号