首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, design and development of wideband circularly polarized (CP) rectangular dielectric resonator antenna (RDRA) is presented. To generate wideband CP in proposed antenna, different feeding mechanism have been studied. Three antenna configurations based on different feeding have been discussed using single and dual pair of microstrip lines aligned perpendicular to each other to generate orthogonal modes resulting in circular polarization. It has been claimed here that excitation of RHCP/LHCP field and its direction of radiation could be controlled using height of microstrip feed lines. Finally antenna configuration‐3 is fabricated and measured which shows 36.8% of input impedance bandwidth (3.48–5.05 GHz) and axial ratio bandwidth of 14.46% (3.67–4.24 GHz) in broadside direction (at Φ = 0°, θ = 0°). The final proposed structure exhibits consistent far‐field characteristics with average LHCP gain of 6.4 dB and almost stable radiation efficiency in entire operational frequency range. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:713–723, 2016.  相似文献   

2.
In this article, a wideband circularly polarized half‐split cylindrical dielectric resonator antenna (HS‐CDRA) having two layers with different permittivity in radial direction is investigated. Designed antenna is excited by a new modified CPW fed which consists of signal line, helps to realization of circular polarization, half‐split cylindrical dielectric resonator (HS‐CDR), to confirm that circular polarization in proposed antenna. HS‐CDR is made of two different materials which can supports to enhance the input impedance bandwidth and 3‐dB axial ratio bandwidth. From the distributions of E‐fields in HS‐CDRA, it is observed that TM11δ mode has been excited. To confirmed the circular polarization in proposed antenna, E‐field distribution on different phases (φ = 0º, 90º, 180º, and 270º) have been plotted. This antenna provides measured ?10 dB input impedance bandwidth of 25.94% (centered on 4.70 GHz) and 3‐dB axial ratio bandwidth in broadside direction of 17.34% (centered on 4.90 GHz). The average gain and radiation efficiency in working band are 1.56 dBi and 93.43% in broadside direction, respectively. CP radiation pattern shows that the proposed antenna has left hand circular polarization and this developed antenna could be useful for wireless applications like WLAN/Wi‐MAX bands.  相似文献   

3.
In this article, a polarization reconfigurable isosceles trapezoidal monopole antenna for the circular polarization (CP) is presented. A trapezoidal monopole and the ground plane are on the same side of the dielectric substrate. The monopole is excited by a reconfigurable T‐shaped 50 Ω microstrip feed line and reconfigurable vertical slots are incorporated in the ground plane to realize switchable wideband CP. For the different switching states of the p‐i‐n diodes, linear polarization, left‐handed and right handed CP can be achieved in the boresight direction (+z direction). The antenna prototype is fabricated and tested. The measured reflection coefficient bandwidth (|S11| < ?10 dB) is 31.2% (2.13 ‐ 2.91 GHz) and axial ratio bandwidth (axial ratio < 3 dB) is 22% (2.18 ‐ 2.72 GHz) for the CP. The measured reflection coefficient bandwidth is 18.56% (2.15 ‐ 2.59 GHz) for linear polarization.  相似文献   

4.
In this article, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) with broadside radiation characteristics has been proposed. By using modified ground plane having an F‐shaped slot, the proposed structure able to generates three sets of modes i.e., fundamental as well as higher order modes. To obtained circular polarization, an orthogonal mode (TE113) in the RDRA has been generated by using the F‐shaped slot on the modified ground plane. The resonance frequency of fundamental mode (TE111) in the rectangular dielectric resonator (DR) has been calculated by using dielectric waveguide model method. The same has been confirmed through E‐field distribution in RDRA. Here, wide axial ratio (AR) bandwidth of the proposed antenna is due to the generation of and modes. It is observed that input impedance bandwidth has been broadening with a pair of excited modes ( and modes) in the proposed antenna structure. All these modes have been excited and merged to form a wide input impedance bandwidth and wide AR bandwidth of the designed antenna. The proposed antenna shows measured input reflection coefficient (S11 < ?10 dB) of 50.55% and measured AR bandwidth (AR < 3 dB) of 14.28%. The designed antenna shows left‐handed circular polarization in broadside direction and offering an average gain and radiation efficiency of 4.29 dBic and 92.22% respectively.  相似文献   

5.
In this article, for the first time, an antenna that can radiate LHCP and RHCP waves simultaneously is presented. The antenna enables simultaneous transmission of both right‐handed (RH) and left‐handed (LH) circular polarized (CP) waves separately over an elevation range from ?45 ° to ?5 ° and 5 ° to 45 ° from the zenith. The simultaneous radiation of dual sense CP in the different spatial directions enables the antenna to act as polarization diversity transmitter. The mechanism of virtual sequential rotation of magnetic currents inside the different parts of the slot, excited with uniform phase fields results in dual CP generation. The uniform phase orthogonal fields are generated in the different parts of the slot essentially by exciting the full wavelength rectangular slot loaded with grounded stubs, symmetrically, with a shorted microstrip line. The final design of the slot antenna arrived with a rigorous parametric study on different dimensional parameters of slot and grounded stub. The measured impedance bandwidth of 22.5% centered around 7 GHz and axial ratio bandwidth of 19% is achieved. An overlapping bandwidth of 17% is achieved where both matching and AR are very good. The measured isolation between the RHCP and LHCP in the above‐mentioned elevation ranges is maintained above 10 dB. The simulated and experimental results are matching very well.  相似文献   

6.
A dual‐band dual‐polarized hybrid aperture‐cylindrical dielectric resonator antenna (CDRA) is examined in this article. Inverted regular pentagon shaped aperture is not only used to launch two radiating hybrid modes (HEM11δ and HEM12δ mode) in CDRA but also act as a radiator. Out of two frequency bands, the lower frequency band is linearly polarized while upper frequency band is the combination of both circular and linear polarization. A circular polarization (CP) characteristic in upper frequency band is created by loading quarter annular stub with microstrip line. LHCP/RHCP can easily be controlled by alternating the position of quarter annular stub. It is operating over two frequency ranges i.e. 2.48‐2.98 GHz and 4.66‐5.88 GHz with the fractional bandwidth 18.31% and 23.14% respectively. Axial ratio bandwidth (3‐dB) is approximately 8.78% (4.9‐5.35 GHz) in upper frequency band. The proposed antenna design is suitable WiMAX (2.5/5.5 GHz) and WLAN (2.5/5.5 GHz) applications.  相似文献   

7.
A new meandered‐line inductor fed wideband circularly polarized rectangular dielectric resonator antenna (DRA) with partial ground plane has been developed in this work. Meandered‐line inductor feed and partial ground plane are used for generation of orthogonal modes, hence circular polarization (CP) in DRA. By controlling the length of meandered‐line inductor, three different CP DRA have been designed for different wireless applications such as Wi‐MAX and WLAN/ISM 2400 band. Distribution of electric field inside rectangular DRA shows that all three antenna having TE11δ mode. Finally, a lower frequency band application at 2.4 GHz (ISM) called here as Proposed Antenna, has been considered for fabrication. This designed antenna shows measured ?10 dB input impedance bandwidth of 20.67% and 3‐dB axial ratio bandwidth of 27.95% in broadside direction. All these three CP antennas (Antenna‐1 to Proposed Antenna) are showing stable gain and right hand circular polarization in broadside direction.  相似文献   

8.
In the present article, a novel single fed square dielectric resonator antenna (SDRA) is presented and two orthogonal modes ( TE 111 x and TE 111 y ) of SDRA are utilized to produce the wideband circular polarization. To generate circular polarization over a broad frequency band, a new technique known as hybrid DRA has been proposed in this article. In this technique, the feeding circuit act as a radiator and also provides feeding to the dielectric resonator which enhances the impedance and axial ratio bandwidth. A 3‐dB axial ratio bandwidth of 26.66% is achieved by the SDRA excited through a rectangular patch united with 50 Ω microstrip line. In order to further increase the axial ratio bandwidth from 26.66% to 48%, a notch is truncated from the rectangular patch. The design antenna prototype has been fabricated and experimentally tested. Experimental results illustrate that the proposed structure has broad impedance and axial ratio bandwidth of 75.86% and 43.75%, respectively, and the entire axial ratio bandwidth fully matched with the impedance bandwidth. The proposed antenna produces a right handed circularly polarized (RHCP) field. By taking the mirror image of the proposed microstrip feeding, the RHCP field is converted into left handed circularly polarized (LHCP) field. This antenna is preferred for wireless applications such as indoors communication, remote sensing, wireless sensor systems and WLAN/WiMAX applications.  相似文献   

9.
This article presents the design of an offset CPW‐fed slot antenna which exhibits a narrow impedance bandwidth (IBW; |S11| ≤ ?10 dB) extending from 1.20 GHz to 1.45 GHz and another wide impedance bandwidth from 1.86 GHz to 8.4 GHz thus covering almost all the conventional operating frequencies. The antenna is loaded with semicircular and rectangular stubs and meandered microstrip lines to realize circular polarization at 1.35 GHz, 3.3 GHz, 4.9 GHz, and 7.5 GHz with axial ratio bandwidth (axial ratio ≤ 3 dB) of 19.25% (1.2‐1.46 GHz), 4.24% (3.24‐3.38 GHz), 4.1%(4.8‐5 GHz), and 5.2% (7.3‐7.69 GHz) respectively thus covering the GPS, WiMAX, WLAN, and X‐band downlink satellite communication application bands. The mechanism of generation of CP is discussed using vector analysis of surface current density distribution. The gain is fairly constant in the wide IBW region with maximum fluctuation of 1.2 dB. The structure is compact with an overall layout area of 0.27λ × 0.27λ, where λ is the free‐space wavelength corresponding to the lowest circular polarized (CP) frequency. A comparison of the proposed antenna with previously reported structures is performed with respect to impedance bandwidth, compactness, number of CP bands, LHCP to RHCP isolation and gain to comprehend the novelty of the proposed design. A prototype of the proposed antenna is fabricated and the measured results are in accord with the simulated results.  相似文献   

10.
This paper presents a wideband circularly polarized broadside radiation characteristics by using stacked rectangular dielectric resonator antenna (DRA) with different volumes. In this designed antenna, the wide input impedance‐ and axial ratio (AR)‐bandwidths come from three factors: stacked rectangular DR with different volumes, stepped‐shaped conformal strip associated with microstrip line as a feed and different type of partial ground plane. Here, the orthogonal TExδ11 and TEy1δ1 modes have been responsible for the generation of CP radiation in stacked rectangular DRA. Measured results show that the proposed stacked rectangular DRA with different volumes achieves input impedance bandwidth of 54.84% while AR bandwidth has been found to be 11.53%. The proposed antenna provides broadside right‐handed CP radiation pattern with gain ranges from 2.27–5.80 dBic and offers an average radiation efficiency of 89.48%, across the entire working bandwidth, respectively. Therefore, this antenna is very much useful for the ISM 2400 band applications.  相似文献   

11.
In this article, a circularly polarized rectangular dielectric resonator antenna fed by a cross‐aperture coupled spiral microstrip line is investigated. A quarter wavelength section of microstrip line is positioned between each arm of the cross slot in a spiral form to generate the circular polarization. The prototype of proposed antenna is fabricated and tested. The measured |S11| and 3‐dB axial ratio frequency range is 31.74%, (2.65–3.65) GHz and 20%, (3.12–3.74) GHz, respectively and the measured total gain and left handed circularly polarized gain are 4.5 and 3.1 dB, respectively. The proposed antenna may be suitable for WiMAX applications.  相似文献   

12.
A dual‐mode circularly polarized compact antenna with integrated left‐hand and right‐hand circular polarization (LHCP and RHCP) is presented in this work. A multilayer arrangement of a square patch and square ring structure with an irregular transmission line is analyzed for dual‐band, dual‐CP operation. To realize dual mode propagation the proposed structure is excited using electromagnetic coupling technique. Succeeding proximity feeding with T‐stub match is analyzed, which conveys impedance bandwidth of 180 and 300 MHz within |S11| < ?10 dB at 3.5 and 5.5 GHz. The designed CP elements is suitably arranged with feed line for generating two orthogonal polarization of equal amplitude and a 90° phase difference at both the resonant modes (TM10 and TM01). Alterable LHCP and RHCP performance is realized by altering the compensated position and peculiar angle. Having both LHCP and RHCP polarization this design shows polarization insensitive characteristic. Each LHCP and RHCP antenna element accomplished a 3‐dB AR of 70 and 120 MHz with a gain up to 6 dBi. With a low profile of 0.27λ0 × 0.27λ0 × 0.04λ0, the CP antenna is fabricated, and the performance is validated through experimental analysis. With all the viable characteristics, the antenna is proposed for Wi‐MAX/WLAN communication.  相似文献   

13.
In this article, frequency tuning and circularly polarized concentric circular microstrip antenna is investigated. The proposed antenna consist of varactor diode for frequency tuning and branch line coupler (BLC) feed network to achieve the circular polarization (RHCP/LHCP). By changing the varactor diode capacitance between 12.33 pF (0 V) to 1.30 pF (15 V) attain the frequency tuning (2.34‐2.68 GHz). The right hand circular polarization (RHCP) and left hand circular polarizations (LHCP) are realized in the antenna through BLC feed network output ports. The impedance bandwidth (2.05‐3.13 GHz) of BLC feed network is well‐matched with the circular microstrip antenna frequency tunable bandwidth. The proposed antenna is fabricated, and simulated results are verified using the mathematical modeling and experimental verification.  相似文献   

14.
In this article, a new modified cross‐shaped coupled cubical dielectric resonator antenna (DRA) has been investigated for dual‐band dual‐polarized applications. The linearly polarized (LP) fields in DRA has been generated by using a single slot in the ground plane and kept at either 45° (SL1) or ?45° (SL2) from the microstrip feed line. Combining these two slots (SL1 and SL2) in the modified ground plane, the proposed structure able to generate circularly polarized (CP) field in DRA. But the generated CP field is not enough to cover ISM 2400 band. To achieve CP in ISM 2400 band, an extra slot (SL3) to the existing slots and an extra strip (ST) in the circular ring feed line have been included. This modified final antenna arrangement has been able to produce LP (due to loading effect, ie, slot and DRA) and CP fields (orthogonal modes have been generated, ie, TE x111 and TE y111), simultaneously. The measured CP and LP, ?10 dB impedance bandwidths are 11.85% (2.38‐2.68 GHz) and 9.11% (3.25‐3.56 GHz) in combination with the 3‐dB axial ratio bandwidth of 4.11% (2.38‐2.48 GHz). The generated CP and LP fields are used for different wireless communication bands such as ISM 2400 and Wi‐MAX (3.3‐3.7 GHz) bands.  相似文献   

15.
In this article, a wideband circularly polarized (CP) dielectric resonator (DR) over an asymmetric‐slot radiator based hybrid‐DR antenna is proposed with bi‐directional radiation characteristics. Bi‐directional CP radiation of the dual sense is obtained using a rectangular‐DR over asymmetric‐rectangular‐slot radiator with L‐shaped feed line. The asymmetric‐slot radiator feed by L‐shaped stub with the coplanar waveguide is used for generating two orthogonal modes, namely TE x δ11 and TEy1δ1 in the combined (rectangular‐DR and asymmetric‐slot radiator) hybrid‐DR antenna, which is verified by the distribution of electric field inside the rectangular DRA. The measured reflection coefficient bandwidth (S11 < ?10 dB) and axial ratio (AR) bandwidth (AR < 3 dB) of the hybrid‐DR antenna are 80.5% (1.87‐4.39 GHz) and 43.8% (1.75‐2.73 GHz), respectively. The antenna radiation is in the broadside (θ = 0°, ? = 0°) direction as well as in the backside (θ = 180°, φ = 0°) direction with equal magnitudes in both the directions. Right‐handed and left‐handed CP waves are achieved respectively, in the boresight (+Z) and the backside (?Z) directions. The proposed CP hybrid‐DR antenna gives an average gain of 3.55 dBic and radiation efficiency of 95.0% in both directions. The proposed antenna covers various wireless useful bands such as ISM 2400 band, Wi‐Fi, Bluetooth, and Wi‐MAX (2.5‐2.7 GHz).  相似文献   

16.
This article presents a new dual C‐shaped rectangular dielectric resonator (DR) based antenna for generation of wideband circularly polarized (CP) radiation. The proposed antenna comprises of a pair of C‐shaped rectangular dielectric DR and a metal strip with a coaxial probe. By utilization of a metal strip at the side surface of C‐shaped rectangular DR, the wideband CP radiation is achieved from the proposed dielectric resonator antenna (DRA). Fundamental orthogonal modes (TExδ11 and TEy1δ1) are excited using the rectangular DRA with a metal strip for the generation of CP fields. The proposed antenna with dual C‐shaped rectangular CP DRA provides the measured ?10 dB reflection coefficient bandwidth of 30.07% (3.22 GHz‐4.36 GHz) with measured 3‐dB axial ratio bandwidth of 14.81% (3.25 GHz‐3.77 GHz) at the boresight. The proposed antenna covers the useful Wi‐MAX band.  相似文献   

17.
This article presents two compact circularly polarized microstrip antennas with a very wide 3 dB axial ratio bandwidth and triple circularly polarized bands. A hexagonal stub (circular polarization element) along with tuning element in the ground plane is used for achieving wide 3 dB ARBW in antenna‐1, while a novel approach of using a parasitic strip around the circular polarization element is used in antenna‐2 for introducing band elimination notches in the circularly polarized band of antenna‐1. The antenna‐1 has a ?10 dB impedance bandwidth of 12.34% (3.8‐4.3 GHz), 84.02% (4.9‐12 GHz), and 3 dB ARBW of 79.94% (4.9‐10.9 GHz). The antenna‐2 displays circularly polarized band elimination notch characteristics with ?10 dB impedance bandwidth of 24.80% (3.85‐4.94 GHz), 31.72% (6.1‐8.4 GHz), 25.35% (9.3‐12 GHz), and 3 dB ARBW of 4.84% (4.63‐4.86 GHz), 19.08% (6.02‐7.29 GHz), and 5.7% (9.54‐10.1 GHz). Both the antennas are designed and fabricated on FR4 substrate of dimension (0.52 × 0.52 × 0.04)λ0 at a frequency of 7.9 GHz.  相似文献   

18.
In this communication, a dielectric resonator based circularly polarized antenna is designed and investigated. A modified aperture is used to excite dual cylindrical dielectric resonator (CDR) blocks. Two important characteristics of the proposed radiator that makes it all the more attractive are as follows: (i) excitation of dual radiating modes that is, HEM11δ and TE01δ mode in cylindrical DR along with the support of dual‐band circularly polarized (CP) waves; (ii) arrangements of dual CDR blocks to reduce the Q‐factor which is useful to enhance the impedance bandwidth of both frequency bands. Fabrication as well as experimental measurement of the antenna prototype has been done for verifying simulation outcomes. This antenna design operates over dual frequency bands, that is, 5.01‐6.41 GHz and 7.3‐7.9 GHz with the fractional bandwidth of 24.73% and 9.39%, respectively. It supports CP waves over the frequency range 6.1‐6.5 GHz and 7.4‐7.8 GHz. The proposed antenna backs right‐hand circularly polarized (RHCP) radiation with an average gain of 4.5 dBi. These characteristics make it well fitted for WLAN, WiMAX (5.2/5.5/5.8 GHz), and downlink defense purpose satellite communication (7.2‐7.7 GHz).  相似文献   

19.
A novel single‐fed dual‐band circular‐polarization (CP) reconfigurable liquid dielectric resonator antenna (LDRA) using 3D printing technology is proposed in this article. With the quasi‐TE111 and ‐TE113 modes of the rectangular LDRA excited, a dual‐band design is achieved. To realize the CP reconfigurability, a combined container, holding the fluidic dielectric (Ethyl acetate, ε r = 6.6), is fabricated by 3D printing technology. Therefore, the CP can be switched between two different states: (1) left hand CP (LHCP), when the right oblique container is full of the liquid solution; (2) right hand CP (RHCP), when the liquid solution is transferred into the left oblique one. Measured results demonstrate that the proposed antenna can achieve the CP reconfigurability in dual band, with the wide bandwidths (|S11| < ?10 dB and AR < 3 dB) of 10.4% (1.55‐1.72 GHz) and 9.7% (2.29‐2.52 GHz), which cover GPS and WLAN bands.  相似文献   

20.
A tilted bi‐sense circularly polarized (CP) antenna and its application for UHF radio frequency identification (RFID) system is proposed. A planar concial monopole working as the electric dipole is designed at first. When a shorting pin is added, a loop radiator would be generated, and thus a pair of orthogonally oriented complementary dipoles is realized. In this way, both right‐handed circularly polarized (RHCP) and left‐handed circularly polarized waves (LHCP) are generated simultaneously in tilted directions within one hemisphere. Then, closed‐form formulas are derived to reveal the tunability mechanism of bi‐sense property and provide a design guideline for system application. It is demonstrated that flare angle of conical monopole has a linear relationship and sine function to CP beam direction and 3‐dB axial ratio (AR) beamwidth, respectively. Finally, antenna prototypes are fabricated and tested for validation. It is also demonstrated that at the tilted direction of θ = ± 45°, a 3‐dB AR bandwidth of 4.9%, and gain up to 5 dB are realized. Comparing with conventional microstrip patch antenna, an enhanced reading range over 5 m can be obtained in the tilted range from 40° to 75° and ? 75° to ?40° in UHF RFID sytem application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号