首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P2X3 receptor subunit, a member of the P2X family of ATP-gated ion channels, is almost exclusively localized in sensory neurons. In the present study, we sought to gain insight into the role of P2X3 and P2X3-containing neurons in sensory transmission, using immunohistochemical approaches. In rat dorsal root ganglia (DRG), P2X3-immunoreactivity (-ir) was observed in small- and medium-sized neurons. Approximately 40% of DRG neuronal profiles in normal rats contained P2X3-ir. In rats that had received neonatal capsaicin treatment, the number of P2X3-positive neurons was decreased by approximately 70%. Analysis of the colocalization of P2X3-ir with cytochemical markers of DRG neurons indicated that approximately 94% of the P2X3-positive neuronal profiles were labelled by isolectin B4 from Bandeiraea simplicifolia, while only 3% contained substance P-ir, and 7% contained somatostatin-ir. In dorsal horn of rat spinal cord, P2X3-ir was observed in the inner portion of lamina II and was reduced subsequent to dorsal rhizotomy, as well as subsequent to neonatal capsaicin treatment. Finally, P2X3-ir accumulated proximal to the site of sciatic nerve ligation, and was seen in nerve fibres in skin and corneal epithelium. In summary, our results suggest that P2X3 is expressed by a functionally heterogeneous population of BSI-B4-binding sensory neurons, and is transported into both central and peripheral processes of these neurons.  相似文献   

2.
Progressive neuropathologic lesions in vitamin E-deficient rhesus monkeys   总被引:1,自引:0,他引:1  
A consistent group of progressive central and peripheral nervous system lesions developed in seven rhesus monkeys maintained on a vitamin E-deficient diet for 30 to 33 months. These lesions were absent from vitamin E-supplemented monkeys. The principal neuropathologic alteration was loss of sensory axons in the posterior columns, sensory roots, and peripheral nerves. Morphologic and morphometric studies indicated that the distal segments of the axons were affected most severely and large-caliber myelinated fibers are selectively involved. Swollen, dystrophic axons (spheroids) occurred infrequently. Degeneration and phagocytosis of small numbers of neuronal perikarya were observed in the dorsal root ganglia and the anterior horns. The number of affected neurons was not proportional to the number of affected axons. Accumulation of lipopigment was evident in neuronal perikarya and CNS endothelial cells. The nervous system lesion were usually accompanied by a chronic necrotizing myopathy. The neuropathologic lesions in vitamin E-deficient monkeys are compared with those in vitamin E-deficient rats and in humans with low serum vitamin E concentrations. A similar type of sensory axonopathy is associated with chronic deficiency of vitamin E in these three species.  相似文献   

3.
1. In cats anesthetized with sodium pentobarbital, recordings were made from dorsal root ganglion (DRG) cells having a peripheral process in the gastrocnemius-soleus (GS) nerve. The GS nerve was left in continuity with the muscle to allow identification of group Ia and Ib fibers by responses of the receptors to muscle stretch and contraction. The central processes of the DRG cells were activated antidromically by stimulation within the spinal cord so that changes in the excitability of the fibers could be examined following conditioning volleys in muscle and cutaneous nerves. 2. Recordings were made from 44 DRG cells. Of these, 15 were group Ia and 9 group Ib afferents of the GS nerve. 3. Of 15 Ia fibers, 12 were activated antidromically by stimulation in the motor nucleus, but no Ib fibers were discharged by such stimulation. Ib fibers could be antidromically activated by stimulation in the intermediate nucleus. 4. The central processes of the Ia DRG cells had slower conduction velocities than did the peripheral processes. 5. The thresholds to electrical stimulation of the peripheral processes of Ia and Ib fibers of the GS nerve showed considerable overlap. 6. All of the Ia DRG cells tested showed an increased excitability following conditioning volleys in the biceps-semitendinosus (BST) nerve. The increase in excitability was produced by the largest fibers of the BST nerve. 7. Stimulation of the sural (SU) or superficial peroneal (SP) cutaneous nerves also increased the excitability of some Ia fibers. However, other Ia fibers were unaffected, and in two cases the excitability was reduced. 8. The excitability of group Ib fibers was increased by conditioning volleys in the BST, SU, or SP nerves. 9. It is concluded that cutaneous volleys produce a mixture of primary afferent depolarization and primary afferent hyperpolarization in Ia fibers of anesthetized cats. Such converse actions probably cancel in excitability tests using population responses. 10. The excitability of single Ia fibers is not stationary in excitability presumably reflect slow alterations within the central nervous system, perhaps related to spontaneous alterations in the level of tonically maintained primary afferent depolarization.  相似文献   

4.
The novel sodium channel PN3/alpha-SNS, which was cloned from a rat dorsal root ganglion (DRG) cDNA library, is expressed predominantly in small sensory neurons and may contribute to the tetrodotoxin-resistant (TTXR) sodium current that is believed to be associated with central sensitization in chronic neuropathic pain states. To assess further the role of PN3, we have used electrophysiological, in situ hybridization and immunohistochemical methods to monitor changes in TTXR sodium current and the distribution of PN3 in normal and peripheral nerve-injured rats. (1) Whole-cell patch-clamp recordings showed that there were no significant changes in the TTXR and TTX-sensitive sodium current densities of small DRG neurons after chronic constriction injury (CCI) of the sciatic nerve. (2) Additionally, in situ hybridization showed that there was no change in the expression of PN3 mRNA in the DRG up to 14 d after CCI. PN3 mRNA was not detected in sections of brain and spinal cord taken from either normal or nerve-injured rats. (3) In contrast, immunohistochemical studies showed that major changes in the subcellular distribution of PN3 protein were caused by either CCI or complete transection of the sciatic nerve. The intensity of PN3 immunolabeling decreased in small DRG neurons and increased in sciatic nerve axons at the site of injury. The alteration in immunolabeling was attributed to translocation of presynthesized, intracellularly located PN3 protein from neuronal somata to peripheral axons, with subsequent accumulation at the site of injury. The specific subcellular redistribution of PN3 after peripheral nerve injury may be an important factor in establishing peripheral nerve hyperexcitability and resultant neuropathic pain.  相似文献   

5.
Adult sensory neurons differ chemically, morphologically, and functionally, but the factors that generate their diversity remain unclear. For example, neuropeptides are generally found in small neurons, whereas abundant neurofilament is common in large neurons. Neurons containing the neuropeptides calcitonin gene-related peptide (CGRP) or substance P were quantified using immunohistochemistry in rat lumbar dorsal root ganglion (DRG) at times before and after sensory neurons contact central and peripheral targets in vivo. No neurons in the newly formed DRG expressed neuropeptide or neuropeptide mRNA, but neuropeptides were detectable about the time that axons connect with peripheral targets. To determine the requirement for target in neuropeptide regulation, embryonic DRG neurons were isolated at times before central and peripheral connections had formed, placed in culture, and immunocytochemically assayed for CGRP and substance P. Cultured neurons expressed neuropeptides with a time course and in proportions similar to those in vivo. Thus, some neurons in the embryonic DRG seem to be intrinsically specified to later express CGRP and substance P. The percentage of CGRP-immunoreactive neurons was not changed by cell density, non-neuronal cells, neurotrophins in addition to nerve growth factor (NGF), or antibody inactivation of neurotrophin-3 in the presence of NGF. To test the role of extrinsic cues on CGRP expression, DRG neurons were co-cultured with potential target tissues. Co-culture with a rat epidermal or smooth muscle cell line increased the proportion of CGRP-containing neurons, whereas primary skeletal muscle and 3T3 cells had no effects. Thus, multiple appropriate sensory neuron phenotypes arise in a regulated fashion in cultured neurons isolated before target connections have formed, and some candidate target tissues can modulate that intrinsic expression pattern.  相似文献   

6.
In the present study we show that, in contrast to the rat, injection of cholera toxin B-subunit (CTB) into the intact sciatic nerve of Macaca mulatta monkey gives rise to labelling of a sparse network of fibers in laminae I-II of spinal cord and of some mainly small dorsal root ganglion (DRG) neurons. Twenty days after sciatic nerve cut, the percentage of CTB-positive lumbar 5 (L5) DRG neuron profiles increased from 11% to 73% of all profiles. In the spinal cord, a marked increase in CTB labelling was seen in laminae I, II, and the dorsal part of lamina III. In the rat L5 DRGs, 18 days after sciatic nerve cut, the percentage of CTB- and CTB conjugated to horseradish peroxidase (HRP)-labelled neuron profiles increased from 45% to 81%, and from 54% to 87% of all neuron profiles, respectively. Cell size measurements in the rat showed that most of the CTB-positive neuron profiles were small in size after axotomy, whereas most were large in intact DRGs. In the rat spinal dorsal horn, a dense network of CTB-positive fibers covered the whole dorsal horn on the axotomized side, whereas CTB-labelled fibers were mainly seen in laminae III and deeper laminae on the contralateral side. A marked increase in CTB-positive fibers was also seen in the gracile nucleus. The present study shows that in both monkey and rat DRGs, a subpopulation of mainly small neurons acquires the capacity to take up CTB/CTB-HRP after axotomy, a capacity normally not associated with these DRG neurons. These neurons may transganglionically transport CTB and CTB-HRP. Thus, after peripheral axotomy, CTB and CTB-HRP are markers not only for large but also for small DRG neurons and, thus, possibly also for both myelinated and unmyelinated primary afferents in the spinal dorsal horn. These findings may lead to a reevaluation of the concept of sprouting, considered to take place in the dorsal horn after peripheral nerve injury.  相似文献   

7.
A possible role for nitric oxide in growth and regeneration of dorsal root ganglion (DRG) afferents has been explored in lesion experiments by comparing immunocytochemistry for nitric oxide synthase (NOS) with that for the growth-associated phosphoprotein 43 (GAP-43). Sciatic nerve ligature induced a progressive increase in the number of small DRG cell profiles immunopositive for NOS between 2 days and 4 weeks of survival. In the proximal stump of the ligature, NOS-immunopositive fibers began to appear 2 days after injury and their growth cones were especially evident after 7 days. NOS-immunopositive fibers appeared past (i.e., distal to) the ligature at 14 days of survival and extended for at least 6 mm in either direction 4 weeks after the lesion. Dorsal root ligature alone at L4-L5 did not result in expression of NOS in DRG neurons or in the appearance of NOS-immunopositive fibers. In rats with dorsal root ligature and nerve ligature, the results were similar to those with nerve ligature only. DRG cell profiles immunopositive for GAP-43 kept increasing from 2 days to 4 weeks after sciatic nerve ligature and included small neurons initially and large neurons subsequently. Numerous axons became GAP-43 immunopositive on both sides of the ligature from 2 days after injury. In double-labeled material, about 80% of DRG cell profiles immunopositive for NOS were also immunopositive for GAP-43. The two antigens co-occurred in peripheral nerve axons proximal to the ligature starting at about 7 days and distal to it at about 2 weeks after ligature. Thus, in response to nerve lesion, nitric oxide may not only provide an injury signal to the central nervous system but may also contribute to the growth and regeneration of injured axons.  相似文献   

8.
We have studied the distribution and regulation of the P2X3 receptor (a ligand-gated ion channel activated by ATP) in adult dorsal root ganglion (DRG) neurons using a polyclonal antibody. P2X3 receptor immunoreactivity was normally present in about 35% of L4/5 DRG neurons, virtually all small in diameter. In the dorsal horn, P2X3 receptor expression was restricted to the terminals of sensory neurons terminating in lamina IIinner. P2X3 receptors were expressed in approximately equal numbers of sensory neurons projecting to skin and viscera but in very few of those innervating skeletal muscle. P2X3 receptors were found mostly in sensory neurons that bind the lectin IB4. After sciatic nerve axotomy, P2X3 receptor expression dropped by more than 50% in L4/5 DRG. Glial cell line-derived neurotrophic factor (GDNF), delivered intrathecally, completely reversed axotomy-induced down-regulation of the P2X3 receptor. We conclude that P2X3 receptors are normally expressed in nociceptive primary sensory neurons, predominantly the nonpeptidergic nociceptors. P2X3 receptors are down-regulated following peripheral nerve injury and their expression can be regulated by GDNF.  相似文献   

9.
The present study determines the proportions of unmyelinated cutaneous axons at the dermal-epidermal junction in glabrous skin and of myelinated and unmyelinated axons in the sural and medial plantar nerves that immunostain for subunits of the ionotropic glutamate receptors. Approximately 20% of the unmyelinated cutaneous axon profiles at the dermal-epidermal junction immunostain for either N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or kainate receptor subunits. These findings are consistent with previous observations that NMDA and non-NMDA antagonists ameliorate nociceptive behaviors that result from noxious peripheral stimulation. In the sural nerve, where the large majority of myelinated fibers are sensory, approximately half of the myelinated axon profiles immunostain for the NMDA receptor 1 (R1) subunit, 28% immunostain for the glutamate receptor 1 (GluR1) AMPA subunit, and 11% for the GluR5,6,7 kainate subunits. Even higher proportions immunostain for these receptors in the medial plantar nerve, a mixed sensory and motor nerve. In the sural nerve, 20% of the unmyelinated axon profiles immunostain for NMDAR1 and only 7% label for GluR1 or GluR5,6,7. Because the sural nerve innervates hairy skin, these data suggest that glutamate will activate a higher proportion of unmyelinated axons in glabrous skin than in hairy skin. Measurements of fiber diameters indicate that all sizes of myelinated axon profiles, including Adelta and Abeta, are positively labeled for the ionotropic receptors. The presence of glutamate receptors on large-diameter myelinated axons suggests that these mechanosensitive receptors, presumably transducing touch and pressure, may also respond to local glutamate and thus be chemosensitive.  相似文献   

10.
It has been recently recognized that increased titers of serum anti-GM1 antibodies may be associated with motoneurone diseases or with multiple motor neuropathy with or without conduction block and also with chronic sensorimotor neuropathy and Guillain-Barré syndrome. Santoro et al. were the first to note that anti-GM1 antibodies were able to bind to the nodes of Ranvier of the sural nerve of a patient with clinical signs and symptoms mostly resembling amyotrophic lateral sclerosis who also showed, in nerve conduction studies, multifocal motor nerve fibers conduction block and serum IGM anti-GM1 antibodies. The two patients presented in this report had asymetrical motor neurone disease with signs and symptoms of lower motoneurone involvement, and other signs, in the first patient, which suggested the existence of upper motoneurone damage. Besides, the second patient also had clinical sensory impairment in the lower limbs. Electrophysiologically, none of them had nerve conduction block but both showed inexcitable median and sural nerve sensory fibers. Both had high titers of anti-GM1. A sural biopsy of both patients showed immunoglobulins into the sensory fibers. However, we do not know whether the anti-GM1 antibodies bind to a cross-reactive glycolipid other than the GM1 itself. In any case, it seems that the presence of anti-GM1 antibodies might be a marker signalling a potentially treatable immune disorder which may have signs of lower and upper motor neurone disease and, also, clinical and electrophysiological evidences of peripheral sensory involvement.  相似文献   

11.
Clinical pathological approach is defined as combination of neurological, neurophysiological and neuroradiological findings for the interpretation of the morphology of the sural nerve. For this purpose, first, the usefulness of simultaneous biopsy of sural nerve and ipsilateral short peroneal muscle was presented. This method has helped establish the diagnosis of angitis or amyloidosis in some cases. Furthermore, motor-dominant clinical picture was ascertained by relative preservation of sural nerve in contrast with severe changes in intramuscular nerve fascicles. Second, histochemistry using UEA-1 lectin to detect somatic sensory C fibers was discussed. UEA-1 specifically binds to unmyelinated axons and small neurons in dorsal root ganglia as well as substantia gelatinosa of the spinal cord. Serial semithin and ultrathin sections were obtained. The semithin section was removed of epon and stained histochemically with UEA-1. Positive fibers in the semithin section was compared with the counterpart in the ultrathin sections. UEA-1 positive fibers were found to comprise 20% of all unmyelinated fibers and be randomly distributed among the entire nerve fascicles. The application of this technique to pathological specimens is now undergoing. Third, an autopsy case with sarin intoxication was reported as an example of systemic study of the peripheral nervous system. The patient was a 51-year-old man who inhaled sarin in the attack of Tokyo Subway. He fell into vegetative state and was passively maintained for 13 months. Peripheral sensory nerve showed typical pattern of dying back-type distal peripheral axonopathy. It might be indicated that peripheral nerve be carefully checked among the sarin victims. In conclusion, the aim of our approach is to combine all clinical information, introduce recent advance in neuroscience, and try to find possible cure to intractable neurological disorders.  相似文献   

12.
The effects of denervated muscle and Schwann cells on collateral sprouting from peripheral nerve were studied in the peroneal and tibial nerves of 48 Sprague-Dawley rats. Three groups were prepared. In group MSW (muscle-Schwann cell-window), the peroneal nerves were transected 3 mm below the sciatic bifurcation. The proximal stumps were sealed in a blocked tube to prevent regeneration and the distal stumps were implanted into denervated muscle cells that were wrapped around the ipsilateral tibial nerve, which had a window of perineurium resected. Schwann cells from the ipsilateral sural nerve were implanted into the muscle. Group MS (muscle-Schwann cell) was similar to group MSW, except that the tibial nerve perineurium was kept intact. In group MW (muscle-window), the muscle was prepared without Schwann cells and the tibial nerve perineurium was windowed. S-100 immunostain was used to identify the Schwann cells surviving 1 week after transplantation. After 16 weeks of regeneration, horseradish peroxidase tracer was used to label motor neurons and sensory neurons reinnervating the peroneal nerve. Myelinated axons of the reinnervated peroneal nerves were quantified with the Bioquant OS/2 computer system (R&M Biometrics, Nashville, TN). A mean of 169 motor neurons in group MSW, 64 in group MW, and 26 in group MS reinnervated the peroneal nerve. In the dorsal root ganglion, the mean number of labeled sensory neurons was 1,283 in group MSW, 947 in group MS, and 615 in group MW. The mean number of myelinated axons in the reinnervated peroneal nerve was 1,659 in group MSW, 359 in group MS, and 348 in group MW. Reinnervated anterolateral compartment muscles in group MSW were significantly heavier than those in group MS or MW. This study demonstrates that the transplantation of denervated muscle and Schwann cells promotes motor and sensory nerve collateral sprouting through a perineurial window.  相似文献   

13.
Loss of neurons has been considered to be a prime cause of nervous disturbances that occur with advancing age. However, the notion of a constitutive aging-related loss of neurons has been challenged recently in several studies that used up-to-date methods for counting neurons. In this study, we have applied stereological techniques with the objective of obtaining quantitative data on total neuron numbers and the distribution of neuron cross-sectional areas in the fifth cervical (C5) and fourth lumbar (L4) dorsal root ganglion (DRG) of 3- and 30-month-old Sprague-Dawley rats. Tissue data were recorded on a confocal laser-scanning microscope with the use of the optical-disector technique and random, systematic sampling. Aged rats of both sexes disclosed only a small decrease (approximately 12%) in the number of cervical and lumbar DRG neurons. Furthermore, there was no significant correlation between the degree of neuron loss and the extent of behavioral deficits among the aged individuals. The DRG neurons of aged rats had a smaller mean cross-sectional area (approximately 15%; P < 0.001) at both DRG levels. Further analysis of the male cohorts was carried out by using isolectin B4 and neurofilament subunit (phosphorylated 200 kDa; RT97) immunoreactivity (IR) as selective markers for unmyelinated and myelinated axons, respectively, and disclosed no significant change in the relative frequencies of immunoreactive neuron profiles in the old rats. However, RT97-IR DRG neurons of the aged rats had significantly smaller cross-sectional areas (approximately 9% in C5; approximately 16% in L4; P < 0.001) than the young adult rats, indicating a selective cell body atrophy among myelinated primary afferents during aging. The results indicate that loss of primary sensory neurons cannot exclusively explain the functional deficits in sensory perception among senescent individuals. It seems likely that other factors at the subcellular level and/or target interaction(s) contribute substantially to the sensory impairments observed with advancing age.  相似文献   

14.
In order to determine the value of a reconstructive procedure in the peripheral nerve, experimental studies often evaluate the number and the diameter of myelinated nerve fibers as a parameter for the quality of regeneration. This study addresses the correlation between the number of fibers in a peripheral motor nerve after microsurgical reconstruction and the functional result, expressed as the force of the reinnervated muscle. In a total number of 24 sheep, the motor branch to the rectus femoris muscle was severed. The muscle was reinnervated either by direct neurorrhaphy or by nerve grafting, performed in three different ways (free grafting to the ipsilateral muscle, free grafting to the contralateral muscle, vascularized grafting to the ipsilateral muscle). In the final experiments, the muscle force in the reinnervated muscle was determined by supramaximal electrical stimulation. Number and diameter of myelinated nerve fibers were evaluated by computer-assisted morphometric analysis. Regression analysis of morphometric data and the muscle forces was calculated. No correlation was found between fiber numbers in the nerve graft and the maximal force. However, a positive correlation between the number of myelinated fibers in the motor branch distal to the site of coaptation and the functional result was observed in some cases. The diameter of myelinated fibers had no influence on the functional outcome.  相似文献   

15.
In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat lumbar (L) 5 dorsal root ganglion (DRG) and areas where afferents from the DRG terminate, the L5 spinal cord and gracile nuclei, following unilateral sciatic nerve transection or crush. From 3 days to 4 weeks following cut or crush injury, the percentage of medium and large BDNF-immunoreactive neurons in the ipsilateral DRG increased significantly compared with those on the contralateral side. Following cut injury, there was no significant change in the percentage of small BDNF-immunoreactive neurons in the ipsilateral DRG; however, the intensity of immunoreactivity of these cells decreased. Following crush injury, however, both the percentage and intensity of small BDNF-immunoreactive neurons in the ipsilateral DRG significantly increased. Following cut injury, the expression of BDNF-immunoreactive axonal fibers decreased markedly in the ipsilateral superficial laminae of the L5 spinal cord and increased significantly in the ipsilateral deeper laminae of the spinal cord and gracile nuclei. Crush injury induced a marked increase in the expression of BDNF-immunoreactive axonal fibers in the superficial laminae of the spinal cord and gracile nuclei. These differences in BDNF response in the DRG and spinal cord after cut or crush injuries may reflect differences in trophic support to the injured DRG neurons and altered neuronal activity in the spinal cord and gracile nuclei following different types of peripheral nerve injury.  相似文献   

16.
We investigated the retrograde axonal transport of 125I-labeled neurotrophins (NGF, BDNF, NT-3, and NT-4) from the sciatic nerve to dorsal root ganglion (DRG) sensory neurons and spinal motor neurons in normal rats or after neuronal injury. DRG neurons showed increased transport of all neurotrophins following crush injury to the sciatic nerve. This was maximal 1 day after sciatic nerve crush and returned to control levels after 7 days. 125I-BDNF transport from sciatic nerve was elevated with injection either proximal to the lesion or directly into the crush site and after transection of the dorsal roots. All neurotrophin transport was receptor-mediated and consistent with neurotrophin binding to the low-affinity neurotrophin receptor (LNR) or Trk receptors. However, transport of 125I-labeled wheat germ agglutinin also increased 1 day after sciatic nerve crush, showing that increased uptake and transport is a generalized response to injury in DRG sensory neurons. Spinal cord motor neurons also showed increased neurotrophin transport following sciatic nerve injury, although this was maximal after 3 days. The transport of 125I-NGF depended on the expression of LNR by injured motor neurons, as demonstrated by competition experiments with unlabeled neurotrophins. The absence of TrkA in normal motor neurons or after axotomy was confirmed by immunostaining and in situ hybridization. Thus, increased transport of neurotrophic factors after neuronal injury is due to multiple receptor-mediated mechanisms including general increases in axonal transport capacity.  相似文献   

17.
The effects of capsaicin were investigated on different populations of dorsal root ganglion cells in the in vitro mouse spinal cord-dorsal root ganglion preparation using intracellular electrodes. Dorsal root ganglion cells were characterised by the conduction velocity of their propagated action potential evoked by electrical stimulation of the dorsal root, and by the shape of their action potential. All cells with C-fiber characteristics (conduction velocity < 0.6 m/s; broad action potential with shoulder on the descending slope) were depolarised and generated action potentials when capsaicin (100-700 nM) was added to the bathing solution for 30 s. At these concentrations the membrane potential of DRG cells with myelinated fibers (conduction velocity > 2.0 m/s) was unaffected. Concentrations of capsaicin of 1.0-5.0 microM depolarised 50% of cells with conduction velocity > 10 m/s. During the depolarization of the membrane no action potentials were generated. In 50% of the capsaicin-sensitive neurons with conduction velocity faster than 10 m/s there was an initial hyperpolarization. Electrical stimulation of the dorsal root failed to evoke action potentials during the depolarization in 38% of the DRG cells with myelinated fibers and in all C-fibers tested within 10 min of the onset of the capsaicin effect. Passive depolarization of the membrane by intrasomal current injection mimicked the conduction block in neurons with large myelinated fibers. These observations confirm that capsaicin applied directly to the dorsal root ganglion affects, in a dose-dependent manner, both myelinated and unmyelinated primary afferents with a higher potency for C-neurons. Capsaicin evoked action potentials in C-neurons but not in neurons with myelinated fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The response of the mature central nervous system (CNS) to injury differs significantly from the response of the peripheral nervous system (PNS). Axotomized PNS neurons generally regenerate following injury, while CNS neurons do not. The mechanisms that are responsible for these differences are not completely known, but both intrinsic neuronal and extrinsic environmental influences are likely to contribute to regenerative success or failure. One intrinsic factor that may contribute to successful axonal regeneration is the induction of specific genes in the injured neurons. In the present study, we have evaluated the hypothesis that expression of the immediate early gene c-jun is involved in a successful regenerative response. We have compared c-Jun expression in dorsal root ganglion (DRG) neurons following central or peripheral axotomy. We prepared animals that received either a sciatic nerve (peripheral) lesion or a dorsal rhizotomy in combination with spinal cord hemisection (central lesion). In a third group of animals, several dorsal roots were placed into the hemisection site along with a fetal spinal cord transplant. This intervention has been demonstrated to promote regrowth of severed axons and provides a model to examine DRG neurons during regenerative growth after central lesion. Our results indicated that c-Jun was upregulated substantially in DRG neurons following a peripheral axotomy, but following a central axotomy, only 18% of the neurons expressed c-Jun. Following dorsal rhizotomy and transplantation, however, c-Jun expression was upregulated dramatically; under those experimental conditions, 63% of the DRG neurons were c-Jun-positive. These data indicate that c-Jun expression may be related to successful regenerative growth following both PNS and CNS lesions.  相似文献   

19.
The authors report a comparative study of peripheral nerve conductions and nerve biopsy and somatosensory evoked potentials between 15 patients with Friedreich's ataxia and 15 patients with Friedreich's ataxia phenotype with selective vitamin E deficiency. The patients in the two groups are of similar age, age of onset, and clinical phenotype. Peripheral motor nerve action potential amplitude, and conduction velocities are within normal ranges in the two groups. In the Friedreich's ataxia group there is an early and severe peripheral sensory axonal neuronopathy, characterised by an important reduction of the amplitude of sensory action potential, and important loss of myelinated fibres with complete disappearance of large myelinated fibres without any regenerative process. In the Friedreich's ataxia phenotype with selective vitamin E deficiency group there is slight-to-moderate axonal sensory neuropathy with normal to moderate decrease of large myelinated fibre density and important regeneration in nerve biopsy. Somatosensory evoked potentials are markedly involved in the two groups asserting a severe involvement of somatosensory pathway in lumbar, thoracic and cervical spinal cord. These findings suggest that the pathological mechanism involved in the two diseases are different: central peripheral axonopathy in Friedreich's ataxia and central distal axonopathy in Friedreich's ataxia phenotype with selective vitamin E deficiency.  相似文献   

20.
This study was designed to determine whether sensory neurons or motoneurons were dominant during the earlier stage of the regeneration process after peripheral axotomy. After transection of the right sciatic nerves of rats, epineurial end neurorrhaphy was performed. At 5, 7 and 14 days postoperatively, the nerves were re-transected at the positive pinch site, and their proximal stumps were exposed to the retrograde neurotracer, Fluoro-Gold (F-G). Seventy-two hours later, the lumbar spinal cords and the L4 and L5 dorsal root ganglia (DRG) were harvested and evaluated. The incidence and the intensity of F-G labelling in DRG were significantly higher than in anterior horns (AH). These results demonstrated that sensory neurons were more dominant than motoneurons in nerve regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号