首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
Effect of strain dependent material properties on formability of sheet metals This paper describes strain induced effects on the change of material properties. Because of these effects the calculation of forming limit curve changes, too. Special attention is given to the material property caused differences between one or more stepped forming operations with main advantages in comparison to the today’s common practice.  相似文献   

3.
Principles, manufacturing and application aspects of super solidus liquid phase sintering of high‐alloyed tool steels and metal matrix composites Iron‐based metal matrix composites (MMC) are applied for abrasive wear resistant applications. A common production route uses hot isostatic pressing (HIP) of metal and carbide powders, a comparatively cost intensive process. Using high‐alloyed tool steels as matrix materials it is possible to obtain dense materials by liquid phase sintering with an internally formed liquid phase. This contribution describes the basic principles of densification of the matrix materials taking thermodynamic calculations into consideration. It points out a production route for processing particulate reinforced, high wear resistant composite materials by sintering. Beside the sintering behaviour concepts for heat treatment as well as the abrasive wear resistance are discussed.  相似文献   

4.
The influence of welding on creep behaviour of modern steels for thermal power generation Un‐ and low alloyed ferritic/bainitic Chromium steels as well as high alloyed ferritic/martensitic 9–12 % Chromium steels are widely used for high temperature components in thermal power generation. Welding in all its variety is the major repair and joining technology for such components. The weld thermal cycle has significant influence on the base material microstructure and its properties. The Heat Affected Zone is often regarded as the weakest link during high temperature service. While weldments of un‐ and low alloyed ferritic Chromium steels can show significant susceptibility to Reheat Cracking in the coarse grained heat affected zone, weldments of high alloyed ferritic Chromium steels generally fail by Type IV Cracking in the fine grained heat affected zone during long term service. In this paper the influence of the weld thermal cycle on the base material microstructure is described. Long‐term creep behaviour of weldments is directly related to the main failure mechanisms in creep exposed ferritic weldments and implications for industries using heat resistant ferritic steels are shown.  相似文献   

5.
Influence of Ductility on the Multiaxial Fatigue Behaviour by the Example of Welded Joints of Steel and Aluminium The multiaxial fatigue behaviour of materials with different ductility under constant and changing principal stress directions is also applicable to welded joints of different materials. For this, welded flange tube connections of the fine grained steel StE 460 and the artificially aged aluminium alloy AlSi1MgMn T6 were investigated under constant amplitude combined bending and torsion. Out‐of‐phase loading, i. e. changing principal stress directions, of the steel joints led to a decrease of fatigue life, which is observed at ductile material states. However, for the aluminium joints out‐of‐phase loading resulted same behaviour as in‐phase loading, which indicates a semi‐ductile material behaviour. The results for the welded steel joints were evaluated on basis of local stresses by the integral hypothesis of the Effective Equivalent Stress EES (WVS). This hypothesis for ductile material states takes into account the life decreasing influence of out‐of‐phase loading by considering the interaction of the shear stresses on different planes. The fatigue behaviour of the aluminium welds is described by the critical plane based combination of shear and normal stresses (KoNoS), which is valid for semi‐ductile material states.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号