首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We develop an essentially non‐oscillatory semi‐Lagrangian method for solving two‐dimensional tidal flows. The governing equations are derived from the incompressible Navier–Stokes equations with assumptions of shallow water flows including bed frictions, eddy viscosity, wind shear stresses and Coriolis forces. The method employs the modified method of characteristics to discretize the convective term in a finite element framework. Limiters are incorporated in the method to reconstruct an essentially non‐oscillatory algorithm at minor additional cost. The central idea consists in combining linear and quadratic interpolation procedures using nodes of the finite element where departure points are localized. The resulting semi‐discretized system is then solved by an explicit Runge–Kutta Chebyshev scheme with extended stages. This scheme adds in a natural way a stabilizing stage to the conventional Runge–Kutta method using the Chebyshev polynomials. The proposed method is verified for the recirculation tidal flow in a channel with forward‐facing step. We also apply the method for simulation of tidal flows in the Strait of Gibraltar. In both test problems, the proposed method demonstrates its ability to handle the interaction between water free‐surface and bed frictions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a method to solve two‐phase flows using the finite element method. On one hand, the algorithm used to solve the Navier–Stokes equations provides the neccessary stabilization for using the efficient and accurate three‐node triangles for both the velocity and pressure fields. On the other hand, the interface position is described by the zero‐level set of an indicator function. To maintain accuracy, even for large‐density ratios, the pseudoconcentration function is corrected at the end of each time step using an algorithm successfully used in the finite difference context. Coupling of both problems is solved in a staggered way. As demonstrated by the solution of a number of numerical tests, the procedure allows dealing with problems involving two interacting fluids with a large‐density ratio. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
An adaptive mesh refinement (AMR) technique is proposed for level set simulations of incompressible multiphase flows. The present AMR technique is implemented for two‐dimensional/three‐dimensional unstructured meshes and extended to multi‐level refinement. Smooth variation of the element size is guaranteed near the interface region with the use of multi‐level refinement. A Courant–Friedrich–Lewy condition for zone adaption frequency is newly introduced to obtain a mass‐conservative solution of incompressible multiphase flows. Finite elements around the interface are dynamically refined using the classical element subdivision method. Accordingly, finite element method is employed to solve the problems governed by the incompressible Navier–Stokes equations, using the level set method for dynamically updated meshes. The accuracy of the adaptive solutions is found to be comparable with that of non‐adaptive solutions only if a similar mesh resolution near the interface is provided. Because of the substantial reduction in the total number of nodes, the adaptive simulations with two‐level refinement used to solve the incompressible Navier–Stokes equations with a free surface are about four times faster than the non‐adaptive ones. Further, the overhead of the present AMR procedure is found to be very small, as compared with the total CPU time for an adaptive simulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of flow of a granular material during the process of discharging a silo is considered in the present paper. The mechanical behaviour of the material is described by the use of the model of the elastic–plastic solid with the Drucker–Prager yield condition and the non‐associative flow rule. The phenomenon of friction between the stored material and the silo walls is taken into account—the Coulomb model of friction is used in the analysis. The problem is analysed by means of the particle‐in‐cell method—a variant of the finite element method which enables to solve the pertinent equations of motion on an arbitrary computational mesh and trace state variables at points of the body chosen independently of the mesh. The method can be regarded as an arbitrary Lagrangian–Eulerian formulation of the finite element method, and overcomes the main drawback of the updated Lagrangian formulation of FEM related to mesh distortion. The entire process of discharging a silo can be analysed by this approach. The dynamic problem is solved by the use of the explicit time‐integration scheme. Several numerical examples are included. The plane strain and axisymmetric problems are solved for silos with flat bottoms and conical hoppers. Some results are compared with experimental ones. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
As parallel and distributed computing gradually becomes the computing standard for large scale problems, the domain decomposition method (DD) has received growing attention since it provides a natural basis for splitting a large problem into many small problems, which can be submitted to individual computing nodes and processed in a parallel fashion. This approach not only provides a method to solve large scale problems that are not solvable on a single computer by using direct sparse solvers but also gives a flexible solution to deal with large scale problems with localized non‐linearities. When some parts of the structure are modified, only the corresponding subdomains and the interface equation that connects all the subdomains need to be recomputed. In this paper, the dual–primal finite element tearing and interconnecting method (FETI‐DP) is carefully investigated, and a reduced back‐substitution (RBS) algorithm is proposed to accelerate the time‐consuming preconditioned conjugate gradient (PCG) iterations involved in the interface problems. Linear–non‐linear analysis (LNA) is also adopted for large scale problems with localized non‐linearities based on subdomain linear–non‐linear identification criteria. This combined approach is named as the FETI‐DP‐RBS‐LNA algorithm and demonstrated on the mechanical analyses of a welding problem. Serial CPU costs of this algorithm are measured at each solution stage and compared with that from the IBM Watson direct sparse solver and the FETI‐DP method. The results demonstrate the effectiveness of the proposed computational approach for simulating welding problems, which is representative of a large class of three‐dimensional large scale problems with localized non‐linearities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
An efficient parallel computing method for high‐speed compressible flows is presented. The numerical analysis of flows with shocks requires very fine computational grids and grid generation requires a great deal of time. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed seamlessly in parallel in terms of nodes. Local finite‐element mesh is generated robustly around each node, even for severe boundary shapes such as cracks. The algorithm and the data structure of finite‐element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. The inter‐processor communication is minimized by renumbering the nodal identification number using ParMETIS. The numerical scheme for high‐speed compressible flows is based on the two‐step Taylor–Galerkin method. The proposed method is implemented on distributed memory systems, such as an Alpha PC cluster, and a parallel supercomputer, Hitachi SR8000. The performance of the method is illustrated by the computation of supersonic flows over a forward facing step. The numerical examples show that crisp shocks are effectively computed on multiprocessors at high efficiency. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The linear equations governing the propagation of inertia‐gravity waves in geophysical fluid flows are discretized on the Arakawa C‐grid using centered differences in space. In contrast to the constant depth case it is demonstrated that varying depth may give rise to increasing energy (and loss of stability) using the natural approximations for the Coriolis terms found in many well‐known codes. This is true no matter which numerical method is used to propagate the equations. By a simple trick based on a modified weighting that ensures that the propagation matrices for the spatially discretized equations become similar to skew‐symmetric matrices, this problem is removed and the energy is conserved in regions with varying depth too. We give a number of examples both of model problems and large‐scale problems in order to illustrate this behaviour. In real applications diffusion, explicit through frictional terms or implicit through numerical diffusion, is introduced both for physical reasons, but often also in order to stabilize the numerical experiments. The growing modes associated with varying depth, the C‐grid and equal weighting may force us to enhance the diffusion more than we would like from physical considerations. The modified weighting offers a simple solution to this problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
The development of a new algorithm to solve the Navier–Stokes equations by an implicit formulation for the finite difference method is presented, that can be used to solve two‐dimensional incompressible flows by formulating the problem in terms of only one variable, the stream function. Two algebraic equations with 11 unknowns are obtained from the discretized mathematical model through the ADI method. An original algorithm is developed which allows a reduction from the original 11 unknowns to five and the use of the Pentadiagonal Matrix Algorithm (PDMA) in each one of the equations. An iterative cycle of calculations is implemented to assess the accuracy and speed of convergence of the algorithm. The relaxation parameter required is analytically obtained in terms of the size of the grid and the value of the Reynolds number by imposing the diagonal dominancy condition in the resulting pentadiagonal matrixes. The algorithm developed is tested by solving two classical steady fluid mechanics problems: cavity‐driven flow with Re=100, 400 and 1000 and flow in a sudden expansion with expansion ratio H/h=2 and Re=50, 100 and 200. The results obtained for the stream function are compared with values obtained by different available numerical methods, to evaluate the accuracy and the CPU time required by the proposed algorithm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the numerical modeling of three‐dimensional unilateral contact problems in elastostatics with Coulomb friction laws. We propose a Newton‐like algorithm to solve the local contact non‐linear equations within the bi‐potential framework. The piecewise continuous contact tangent matrices are explicitly derived. A comparative study is made between the Newton algorithm and the previously developed Uzawa algorithm. A test example is included to demonstrate the developed algorithms and to highlight their performance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a finite difference marker‐and‐cell (MAC) scheme is presented for the steady Stokes equations with moving interfaces and Dirichlet boundary condition. The moving interfaces are represented by Lagrangian control points and their position is updated implicitly using a Jacobian‐free approach within each time step. The forces at the moving interfaces are calculated from the position of the interfaces and interpolated using cubic splines and then applied to the fluid through the related jump conditions. The proposed Jacobian‐free Newton–generalized minimum residual (GMRES) method avoids the need to form and store the matrix explicitly in the computation of the inverse of the Jacobian and betters numerical stability. The Stokes equations are discretized on a MAC grid via a second‐order finite difference scheme with the incorporation of jump contributions and the resulting saddle point system is solved by the conjugate gradient Uzawa‐type method. Numerical results demonstrate very well the accuracy and effectiveness of the proposed method. The present algorithm has been applied to solve incompressible Navier–Stokes flows with moving interfaces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A velocity‐linked algorithm for solving unsteady fluid–structure interaction (FSI) problems in a fully coupled manner is developed using the arbitrary Lagrangian–Eulerian method. The P2/P1 finite element is used to spatially discretize the incompressible Navier–Stokes equations and structural equations, and the generalized‐ α method is adopted for temporal discretization. Common velocity variables are employed at the fluid–structure interface for the strong coupling of both equations. Because of the velocity‐linked formulation, kinematic compatibility is automatically satisfied and forcing terms do not need to be calculated explicitly. Both the numerical stability and the convergence characteristics of an iterative solver for the coupled algorithm are investigated by solving the FSI problem of flexible tube flows. It is noteworthy that the generalized‐ α method with small damping is free from unstable velocity fields. However, the convergence characteristics of the coupled system deteriorate greatly for certain Poisson's ratios so that direct solvers are essential for these cases. Furthermore, the proposed method is shown to clearly display the advantage of considering FSI in the simulation of flexible tube flows, while enabling much larger time‐steps than those adopted in some previous studies. This is possible through the strong coupling of the fluid and structural equations by employing common primitive variables. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A two‐level domain decomposition method is introduced for general shape optimization problems constrained by the incompressible Navier–Stokes equations. The optimization problem is first discretized with a finite element method on an unstructured moving mesh that is implicitly defined without assuming that the computational domain is known and then solved by some one‐shot Lagrange–Newton–Krylov–Schwarz algorithms. In this approach, the shape of the domain, its corresponding finite element mesh, the flow fields and their corresponding Lagrange multipliers are all obtained computationally in a single solve of a nonlinear system of equations. Highly scalable parallel algorithms are absolutely necessary to solve such an expensive system. The one‐level domain decomposition method works reasonably well when the number of processors is not large. Aiming for machines with a large number of processors and robust nonlinear convergence, we introduce a two‐level inexact Newton method with a hybrid two‐level overlapping Schwarz preconditioner. As applications, we consider the shape optimization of a cannula problem and an artery bypass problem in 2D. Numerical experiments show that our algorithm performs well on a supercomputer with over 1000 processors for problems with millions of unknowns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes a new computational model developed to solve two‐dimensional incompressible viscous flow problems in external flow fields. The model based on the Navier–Stokes equations in primitive variables is able to solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the pressure projection method. The external flow field is simulated using the boundary element method by solving a pressure Poisson equation that assumes the pressure as zero at the infinite boundary. The momentum equation of the flow motion is solved using the three‐step finite element method. The arbitrary Lagrangian–Eulerian method is incorporated into the model, to solve the moving boundary problems. The present model is applied to simulate various external flow problems like flow across circular cylinder, acceleration and deceleration of the circular cylinder moving in a still fluid and vibration of the circular cylinder induced by the vortex shedding. The simulation results are found to be very reasonable and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A novel Lagrangian gradient smoothing method (L‐GSM) is developed to solve “solid‐flow” (flow media with material strength) problems governed by Lagrangian form of Navier‐Stokes equations. It is a particle‐like method, similar to the smoothed particle hydrodynamics (SPH) method but without the so‐called tensile instability that exists in the SPH since its birth. The L‐GSM uses gradient smoothing technique to approximate the gradient of the field variables, based on the standard GSM that was found working well with Euler grids for general fluids. The Delaunay triangulation algorithm is adopted to update the connectivity of the particles, so that supporting neighboring particles can be determined for accurate gradient approximations. Special techniques are also devised for treatments of 3 types of boundaries: no‐slip solid boundary, free‐surface boundary, and periodical boundary. An advanced GSM operation for better consistency condition is then developed. Tensile stability condition of L‐GSM is investigated through the von Neumann stability analysis as well as numerical tests. The proposed L‐GSM is validated by using benchmarking examples of incompressible flows, including the Couette flow, Poiseuille flow, and 2D shear‐driven cavity. It is then applied to solve a practical problem of solid flows: the natural failure process of soil and the resultant soil flows. The numerical results are compared with theoretical solutions, experimental data, and other numerical results by SPH and FDM to evaluate further L‐GSM performance. It shows that the L‐GSM scheme can give a very accurate result for all these examples. Both the theoretical analysis and the numerical testing results demonstrate that the proposed L‐GSM approach restores first‐order accuracy unconditionally and does not suffer from the tensile instability. It is also shown that the L‐GSM is much more computational efficient compared with SPH, especially when a large number of particles are employed in simulation.  相似文献   

15.
When using particle methods to simulate water–air flows with compressible air pockets, a major challenge is to deal with the large differences in physical properties (e.g., density and viscosity) between water and air. In addition, the accurate modeling of air compressibility is essential. To this end, a new two‐phase strategy is proposed to simulate incompressible and compressible fluids simultaneously without iterations between the solvers for incompressible and compressible flows. Water is modeled by the recently developed 2‐phase Consistent Particle Method for incompressible flows. For air modeling, a new compressible solver is proposed based on the ideal gas law and thermodynamics. The formulation avoids the problem of determining the actual sound speed that is dependent on the temperature and is therefore not necessarily constant. In addition, the compressible air solver is seamlessly integrated with the incompressible solver 2‐phase Consistent Particle Method because they both use the same predictor–corrector scheme to solve the governing equations. The performance of the proposed method is demonstrated by three benchmark problems as well as an experimental study of sloshing impact with entrapped air pockets in an oscillating tank. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The performance of high‐resolution total variation diminishing (TVD) schemes for simulating dam‐break problems are presented and evaluated. Three robust and reliable first‐order upwind schemes, namely FVS, Roe and HLLE schemes, are extended to six second‐order TVD schemes using two different approaches, the Sweby flux limiter approach and the direct MUSCL‐Hancock slope limiter. For idealized dam‐break flows, comparisons of the simulated results with the exact solutions show that the flux vector splitting (FVS) scheme coupled with the direct MUSCL‐Hancock (DMH) slope limiter approach has the best numerical performance among the presented schemes. Application of the FVS‐DMH scheme to a dam‐break experiment with sloping dry bed shows that the simulated water depths agree well with the measured.  相似文献   

17.
A local level set algorithm for simulating interfacial flows described by the two‐dimensional incompressible Navier–Stokes equations is presented. The governing equations are solved using a finite‐difference discretization on a Cartesian grid and a second‐order approximate projection method. The level set transport and reinitialization equations are solved in a narrow band around the interface using an adaptive refined grid, which is reconstructed every time step and refined using a simple uniform cell‐splitting operation within the band. Instabilities at the border of the narrow band are avoided by smoothing the level set function in the outer part of the band. The influence of different PDE‐based reinitialization strategies on the accuracy of the results is investigated. The ability of the proposed method to accurately compute interfacial flows is discussed using different tests, namely the advection of a circle of fluid in two different time‐reversed vortex flows, the advection of Zalesak's rotating disk, the propagation of small‐amplitude gravity and capillary waves at the interface between two superposed viscous fluids in deep water, and a classical test of Rayleigh–Taylor instability with and without surface tension effects. The interface location error and area loss for some of the results obtained are compared with those of a recent particle level set method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Conventional approaches for solving the Navier–Stokes equations of incompressible fluid dynamics are the primitive‐variable approach and the vorticity–velocity approach. In this paper, an alternative approach is presented. In this approach, pressure and one of the velocity components are eliminated from the governing equations. The result is one higher‐order partial differential equation with one unknown for two‐dimensional problems or two higher‐order partial differential equations with two unknowns for three‐dimensional problems. A meshless collocation method based on radial basis functions for solving the Navier–Stokes equations using this approach is presented. The proposed method is used to solve a two‐ and a three‐dimensional test problem of which exact solutions are known. It is found that, with appropriate values of the method parameters, solutions of satisfactory accuracy can be obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The dual‐primal finite element tearing and interconnecting method (FETI‐DP) is extended to systems of linear equations arising from a finite element discretization for a class of fluid–structure interaction problems in the frequency domain. A preconditioned generalized minimal residual method is used to solve the linear equations for the Lagrange multipliers introduced on the subdomain boundaries to enforce continuity of the solution. The coupling between the fluid and the structure on the fluid–structure interface requires an appropriate choice of coarse level degrees of freedom in the FETI‐DP algorithm to achieve fast convergence. Several choices are proposed and tested by numerical experiments on three‐dimensional fluid–structure interaction problems in the mid‐frequency regime that demonstrate the greatly improved performance of the proposed algorithm over the standard FETI‐DP method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We examined, through comparison among the full‐coupling (FC), operator‐splitting (OS), and predictor–corrector (PC) techniques, the effectiveness of using the PC technique to solve depth‐averaged reactive transport equations in the shallow water domain. Our investigation has led to three major conclusions. Firstly, both the OS and PC techniques can efficiently solve reactive transport equations because the advection–diffusion transport equations are solved outside the non‐linear iteration loop and the reaction equations are solved node by node. However, these two techniques may risk sacrificing computational accuracy. Secondly, the OS or PC technique incorporated with the Lagrangian–Eulerian (LE) approach can handle boundary sources more precisely than alternatively with the conventional Eulerian (CE) approach. Thirdly, with the LE approach incorporated, the numerical results from the three techniques agreed highly with one another except when diffusion became significant. In this case, the PC technique's result still matched well with the FC technique's result, but differences between the OS and FC techniques' results arose as diffusion increased. Based on this study, we recommend to apply as a first step the PC technique to solving reactive transport equations with respect to both computational efficiency and accuracy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号