首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For nickel and cobalt recovery from spent NiMH batteries by electrowinning, the effect of different electrowinning parameters as boric acid concentration, temperature, current density, and pH were studied using different synthetic solutions. The optimized operational parameters were applied in an electrowinning test with a solution achieved by leaching the electrodes of NiMH batteries. The electrowinning tests were performed galvanostatically in a two‐compartment cell separated by an anionic membrane. A platinum/iridium‐coated titanium anode and a stainless‐steel cathode were used. A sodium sulfate solution served as anolyte. The results demonstrate the technical viability of nickel and cobalt recovery. The chemical composition of the obtained deposit presented high nickel and cobalt concentrations.  相似文献   

2.
The simultaneous extraction of Co(II) and Mg(II) from nickel sulfate solutions has been carried out using the organophosphonic extractant Ionquest 801 diluted in Exxsol D‐80. Statistical design and analysis of experiments were used in order to determine the main effects and interactions of the solvent extraction parameters, which were the extraction pH at equilibrium, the temperature, the extractant concentration and the organic/aqueous phase ratio. A statistically designed experiment was also carried out to study the stripping of the Ionquest 801 organic phase loaded with cobalt and magnesium by sulfuric acid solution. The number of stages required for both extraction and stripping processes of cobalt and magnesium was evaluated. The results of continuous counter‐current mini‐plant tests demonstrated the simultaneous recovery of cobalt and magnesium from nickel sulfate solution. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
《分离科学与技术》2012,47(9):2067-2080
Abstract

In this paper, a process is reported for the recovery of cobalt and nickel from copper raffinate solutions using partially saponified Cyanex 272 and D2EHPA as the extractants. The aqueous feed contains 1.65 g/L cobalt and 16.42 g/L nickel. More than 99.9% cobalt separation was achieved with 0.13 M Cyanex 272 (60% neutralized with alkali) in two counter‐current stages at an aqueous to organic phase ratio of 1.1:1. Co‐extraction of nickel was 0.18% only. Stripping of cobalt from a loaded organic phase was carried out with synthetic spent electrolyte solution at an organic to aqueous phase ratio of 2.5 in two counter‐current stages to generate a pregnant electrolyte solution to produce cobalt metal by electrowinning. Similarly, optimum conditions for nickel extraction with 60% neutralized 1 M D2EHPA at O/A ratio of 1.4 in 2 two stages and stripping of metal with synthetic spent electrolyte at O/A ratio of 1.6 in two stages were standardized. Extraction and stripping efficiencies were >99% and the flowsheet of the process is demonstrated.  相似文献   

4.
Nickel–metal hydride batteries contain valuable metallic components and although they are not considered a hazardous waste, recovery of these materials is necessary from an economic point of view. In this work a hydrometallurgical method for the dissolution and separation of the metals from cylindrical nickel–metal hydride rechargeable batteries was investigated. Hydrochloric acid was employed as the leaching agent to dissolve the metals from the batteries. Dissolution of metals was investigated as a function of acid concentration, leaching time and temperature. Suitable conditions for maximum metal dissolution were 3 h leaching with 4.0 mol dm?3 hydrochloric acid solutions at 95 °C. Extraction of 98% of nickel, 100% of cobalt and 99% of rare earth elements was achieved under these conditions. Separation of the rare earths from nickel and cobalt was preliminarily investigated by single batch solvent extraction with 25% bis(2‐ethylhexyl)phosphoric acid. Efficient separation via complete extraction of the rare earths was obtained at a pH of approximately 2.5 while leaving nickel and cobalt in the raffinate. A shrinking particle model which can enable, under certain conditions, evaluation of the extent of metal dissolution present in nickel–metal hydride batteries was developed. A proposed electrochemical recovery of nickel and cobalt is also briefly discussed. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
A new solvent‐extraction process for the separation of cadmium, cobalt, and nickel in sulphate solutions coming from the hydrometallurgical processing of spent Ni‐Cd batteries is proposed. The main innovation is to use nickel salts of the extractants, thus avoiding external pH control in the extraction operation. The extractants are first loaded with nickel in conditioning steps, using a neutralizer for pH control, and afterwards contacted with the aqueous processing solutions for extraction of interested metals with no further need of neutralization. This process is an alternative to the usual approach, which uses the sodium or ammonium salts of the extractants, avoiding introducing these cations in the process stream. Using this approach, the extraction of cadmium with nickel salt of 1 M DEHPA was performed at resulting pH values of 3.8–4.3 producing an organic phase loaded with 35 g/L Cd. Cobalt extraction with the nickel salt of Cyanex 272 was further achieved at resulting pH of 5.1–5.7 obtaining a organic loaded with 6.5 g/L Co.  相似文献   

6.
DP‐8R and ACORGA M5640 extractants diluted in Exxsol D100 were used to co‐extract cobalt and nickel from aqueous acidic sulfate media. The influences of equilibration time, temperature, equilibrium pH and reagent concentrations on the extraction of both metals have been studied. It was observed that both cobalt and nickel extraction are slightly sensitive to temperature but are pH dependent. Metal extraction equilibria are reached within about 5 min contact time. In addition, cobalt extraction depends on the extractant concentration in the organic phase. For a solution containing 0.5 g dm?3 each of cobalt and nickel and an initial pH of 4.1, conditions were established for the co‐extraction of both metals and selective stripping (with H2SO4) of cobalt and nickel. Using the appropriate reagent concentrations the yield (extraction stage) for both metals exceeded 90%, and stripping of cobalt and nickel was almost quantitative. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Abstract

The use of an organophosphinic acid to separate cobalt from nickel by solvent extraction is described. Comparative data indicate that the phosphinic acid is superior to analagous phosphoric and phosphonic acids in terms of cobalt-nickel selectivity and the ability to reject calcium. Important reagent properties, such as low aqueous solubility and hydrolytic stability, are discussed. The results of continuous, counter-current, mini-plant tests demonstrate the recovery of high purity cobalt from concentrated nickel sulphate solutions.  相似文献   

8.
BACKGROUND: Removal of cobalt and zinc from concentrated nickel solutions separately using two Cyanex 272 circuits has been practised in the nickel industry. However, no detailed study has been conducted and data are scarce for further improvement. This study aims to optimise the operating conditions and to simplify the process flowsheet. RESULTS: With a synthetic solution containing 100 g L?1 Ni, 1.4 g L?1 Co and 0.8 g L?1 Zn and the organic solution containing Cyanex 272 and TBP in Shellsol D70, the operating conditions of extraction, scrubbing and stripping were optimised. McCabe–Thiele diagrams were constructed to determine the theoretical extraction and stripping stages and a flowsheet to separate cobalt and zinc from nickel was proposed. With this flowsheet, more than 99% cobalt and zinc could be separated, resulting in a pure nickel solution with less than 10 mg L?1 of cobalt and zinc. CONCLUSIONS: The current study shows that Cyanex 272 can be used to separate cobalt and zinc in one Cyanex 272 circuit effectively from concentrated nickel solutions to obtain very pure nickel solutions suitable for nickel electrowinning or hydrogen reduction. The cobalt and zinc in the loaded strip liquor were concentrated over 10 times and can be separated readily in another much smaller solvent extraction circuit. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
The extraction of divalent copper, nickel and cobalt from acidic chloride solutions with solutions of heptaloxime, nonaloxime and 2-methyldekaloxime in toluene has been studied at 18*C.

These metals were found to be extracted according to the following solvation reaction:

The influence of syn-anti isomerization of aldoximes on the extraction has been discussed. Taking into account association and syn - anti isomerization constants of aldoximes in organic phase,hydration of extracted oomplexes and activities of salts in aqueous phase, effective extraction oonstants have been calculated for chloride solutions.

Separation of nickel and cobalt from aoidic chloride, bromide and thiooyanate solutions by extraction with heptaloxime has been studied.  相似文献   

10.
《分离科学与技术》2012,47(18):2735-2740
Simultaneous recovery of nickel and cobalt from aqueous solutions by complexation-ultrafiltration process with polyethylenimine (PEI) was studied. Experiments were performed as a function of polymer/metal ratio (P/M), solution pH, and ionic strength. Effects of concentration time on metal rejection and membrane flux were also studied. At optimum experimental conditions of pH 6.0 and P/M 5.0, the nickel removal efficiency reaches at 99.9% and cobalt removal efficiency goes to 96.4%. Both nickel and cobalt removal efficiencies decreased as the adding salt concentration increases. During 12 h of the ultrafiltration process, the decline of membrane flux was less than 16% and the removal efficiencies for both nickel and cobalt were kept almost constant. Diafiltration was further performed to regenerate PEI. The removal efficiencies for both metals using recycled PEI were found to be close to those with the original PEI. Results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for simultaneous recovery of nickel and cobalt from aqueous solutions.  相似文献   

11.
In this work, cobalt from spent Li-ion batteries of cellular phones was recycled using electrochemical techniques. The efficiency, structure and morphology of deposits were influenced by the pH solution and charge density. Maximum efficiency is obtained for pH = 5.40 for all charge densities analyzed. The presence of the cobalt hcp phase for both pH solutions (5.40 and 2.70) and charge density conditions (10.0 and 50.0 C cm−2) used in the electrodeposition process was detected by X-ray diffraction. The growth of the cobalt deposit is favored in the crystallographic direction [002] for pH = 5.40 and in the direction [110] for pH = 2.70 when the charge density is 10.0 C cm−2. The [100] and [101] crystallographic directions of hcp phase were detected by X-ray diffractogram for both pH conditions when the charge density was increased to 50.0 C cm−2. The potentiodynamic dissolution of the cobalt depends on its structural composition.  相似文献   

12.
The paper describes the results of electrochemical investigations of Ni–Co deposition from a sulfamate bath in the presence of boric acid and two additives. The individual deposition of nickel was shown to be partly inhibited by the adsorption of sulfamate ions at low polarization; such inhibition was not observed for cobalt. The introduction of saccharin at 100 ppm, with a wetting agent seems to hinder sulfamate adsorption and Ni deposition departs at less cathodic potentials. The presence of cobalt has no effect on nickel deposition, whereas cobalt deposition is hindered by the presence of nickel in the bath. Galvanostatic deposition was carried out at the surface of a RDE and with a rotating cylinder Hull cell. At low current densities deposits with a Co content of approx. 40% were produced, but this content was shown to decrease with the applied current density. Examination of experimental data showed that cobalt deposition is diffusion-controlled and that Co content decreases with the applied current density relative to the limiting current density.  相似文献   

13.
丙酮溶解分离出正极材料,2 mol/L H2SO4+30%H2O2浸出,水解净化除杂后,P507三级萃取,H2SO4反萃取回收废弃锂离子电池中的钴元素,优化了各步骤的操作参数,最终得到适用于生产锂钴氧化物的硫酸钴,钴的回收率达到95%。  相似文献   

14.
The kinetics of the extraction of zinc, cobalt and nickel from perchlorate solutions using di 2-ethyl-hexyl phosphoric acid (D2EHPA) dissolved in heptane were studied using the Rotating Diffusion Cell technique. The extraction of each metal was investigated individually over a wide range of metal concentration, extractant concentration, pH and temperature conditions.

The data were analysed in terms of a mass transfer with chemical reaction (MTWCR) mechanism. Hughes and Rod'/s generalized MTWCR model was used to fit the cobalt data using kinetic and equilibrium parameters. The zinc and nickel data were quantitatively described within the framework of the MTWCR model. The zinc extraction rate was so fast that mass transfer alone was rate controlling. The nickel extraction experiments were so slow that the metal-ligand complex formation was incomplete in the aqueous film. Some reaction was determined to be occurring in the aqueous bulk solution as well.  相似文献   

15.
《分离科学与技术》2012,47(16):2485-2494
The main goal of the present study is to explain synergistic extraction of nickel from simulated Cr-Ni electroplating bath solutions (SEBS) using 5,8-diethyl-7-hydroxydodecane-6-one oxime (LIX 63) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) as extractants by emulsion liquid membrane (ELM) technique. The importance of membrane composition and aqueous phase properties on nickel extraction percentage has been highlighted for the selective extraction of nickel. Some important parameters like acid concentration, stripping solution type and concentration, mixing speed, extractant concentrations, phase ratio, and surfactant concentration was studied to improve the extraction and stripping efficiencies. Higher than > 99% of nickel was recovered at optimum conditions within 6 min. The higher separation factors (βNi/Cr) were obtained as 580. As a result, the nickel extraction kinetic with D2EHPA has been defined as faster than LIX63. So, the kinetic transport of nickel mainly depends on LIX63 than D2EHPA. According to these results, D2EHPA behaves as a synergistic extractant in the present extraction mechanism.  相似文献   

16.
BACKGROUND: Supported liquid membranes (SLM) are an alternative technique to remove and recover metals from diluted process solutions and waste‐water. In the present work, the removal of Co(II) from a synthetic CoSO4 solution containing initial amounts of cobalt(II) in the range 100–200 ppm (0.1–0.2 g dm?3) has been studied on a pilot scale. By performing batch equilibrium experiments, the optimal settings, i.e. the composition of the organic phase, the pH of the feed, the type and concentration of the stripping agent were determined. RESULTS: It is shown that the equilibrium characteristics of a synergistic extractant mixture containing di‐2‐ethyl‐hexylphosphoric acid (D2EHPA) and 5‐dodecylsalicylaldoxime (LIX 860‐I) are superior to D2EHPA. Both hydrochloric acid and sulfuric acid have been evaluated as stripping solutions in liquid–liquid extraction tests and as the receiving phase in a SLM configuration. Although equilibrium tests showed no difference in stripping characteristics between both chemicals, it was observed that in a SLM configuration the stability of the system when hydrochloric acid is used is poor. With a commercially available SLM module (Liqui‐Cel Extra‐Flow 4 × 28) having a surface area of 19 m2, a steady Co(II) flux of 0.140 gm?2h?1 has been obtained at influent concentrations of cobalt between 100 and 200 ppm with 3 mol dm?3 sulfuric acid as stripping phase. CONCLUSIONS: The results obtained show that a supported liquid membrane containing a synergistic mixture of LIX 860‐I and D2EHPA gives the possibility of recovering cobalt from dilute solutions. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
ABSTRACT A study has been made of the extraction of cobalt and nickel from sulfate solutions into bis(2,4,4 tri-methylpentyl) Phosphinic acid - “Cyanex 272”, diluent Esso solvent DX 3641, for both high and low metal loading in the organic phase. In dilute solution, 0.01 M, extraction constants and enthalpies were determined for both metals. The extraction of cobalt was always favored over that of nickel, increasing with increase in temperature. No structure change with temperature was found for the cobalt-Cyanex complex. Phase modifiers were found to effect the selectivity of “Cyanex 272” for cobalt.

At high metal loading, equilibrium curves for cobalt were fitted using semi-empirical curve fitting, while for nickel a straight line variation was observed. Organic phase polymerization was observed for both metals the degree of aggregation increasing with increase in loading. A step change increase in the viscosity of the organic phase was observed at high cobalt loading. Phase modifiers proved to be ineffective In reducing the increase in organic phase viscosity.  相似文献   

18.
The kinetics of the extraction of cobalt and nickel using purified mono 2-ethyl hexyl phosphonic acid mono 2-ethyl hexyl ester (HEHEHP) were studied using the Rotating Diffusion Cell (RDC) apparatus. The extraction of cobalt was Investigated over a wide range of cobalt concentration, extractant concentration, pH and temperature conditions. Nickel extraction was examined over a wide range of nickel concentrations.

The kinetic data were treated according to both interfacial and mass transfer with chemical reaction (MTWCR) models. The MTWCR model adequately described the kinetic data for both the cobalt and nickel extraction experiments. No variation of an interfacial model was adequate to describe the data. In the MTWCR model, the extraction rate was shown to be controlled by a mechanism involving diffusion of the extractant into the aqueous phase boundary layer with subsequent reaction involving the addition of the first ligand to the cobalt or nickel ion. This extraction mechanism was substantiated by supplementary results including the activation energy determination which indicated mixed diffusion and chemical reaction control, the significant measured rate of partition of the extractant to the aqueous phase, and the values of the cobalt and nickel complex formation constants in the aqueous phase.  相似文献   

19.
A mini liquid‐liquid extractor was designed based on a feedback fluidic oscillator. According to the Coanda effect, the designed oscillator with two feedback channels enables good mixing of the aqueous and organic phases. Co‐current liquid‐liquid extraction was performed in the mini extractor, and it was visually observed that the aqueous phase was dispersed into small droplets because of fluidic oscillation and vortex formation. The aqueous phase was more effectively dispersed at the stage near the outlet and with increasing flow. Several tests were performed for evaluating the extraction performance of the extractor using 30 % tributyl phosphate‐kerosene and 3 M HNO3 solutions as the organic and aqueous phases, respectively. The obtained extraction efficiency was close to the equilibrium efficiency, indicating that this extractor has the potential for liquid‐liquid extraction of hazardous liquids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号