首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Material properties by continuous elastic straining Within the scope of a common research project of the steel and automotive industry, 20 sheet steels have been investigated to obtain input data for FE‐analysis. In detail, characteristical elastic, plastic and fatique values were determined by several testing institutes for a period of 3 years. Knowledge of dependency of Young’s modulus from temperature and orientation is important for spring back at the press shop and stiffness of parts for automotive. Young’s modulus was determined by tensile tests in delivered state, after prestraining, heat treatment at room temperature and –40 °C and 100 °C. Young’s modulus is dependent from the orientation to rolling direction and can be classified in groups. Young’s modulus of ferritic steels is decreased about 10 % by prestraining of 2 % but recovered after annealing at 170 °C. Temperature dependency well known from non destructive tests are confirmed.  相似文献   

2.
Influence of temperature and prestraining on the plastic material behaviour of modern sheet steels for autobody applications Within the scope of a common research project of the automotive and steel industry, characteristic values describing the plastical behaviour of 20 sheet steels have been determined. In detail, quasistatic tensile tests at the testing temperatures ‐40 °C, 23 °C and 100 °C were carried out to obtain flow curves for the as delivered materials as well as for steels after a defined prestraining or heat treatment. Additionally, sheet metal testing led to forming limit diagrams and limiting drawing ratios including the working ranges for deep drawing. The results of the tensile tests showed significant differences between steel groups with regard to their strain hardening behaviour, which can be described by the ratio of yield and tensile strength Rp0,2/Rm or the ΘIV‐value, and their temperature sensitivity. Within one steel group, consisting of steels with similar strain hardening behaviour, it might be possible to determine flow curves of one steel in a defined condition in order to calculate the flow curves of other steels with different strength. An advantage would be a lesser number of experimental tests which have to be performed in order to supply reliable input data for numerical material and component modelling.  相似文献   

3.
Materials Data for Fatigue Life Calculation of Steel Sheet Structures for Automotive Engineering Within a joint project of the steel and automotive industry 17 steel sheet materials for automotive engineering in various delivery and forming conditions at temperatures of –40 °C, 22 °C and 100 °C were investigated. In the course of 37 test series strain controlled fatigue curves to crack initiation and stress‐strain‐curves under monotonic and cyclic loading were determined. All experimental data, hysteresis loops and determined cyclic properties are available in a database. A correlation between the mechanical properties from tensile tests and the properties from strain controlled cyclic experiments seems to be possible.  相似文献   

4.
5.
Influence of elastic material characteristics on the properties of forming parts Trends in the automotive industry tend towards safety, fuel saving and reduction of exhaust gas result in an increased application of high strength steels in the car body production. The sheet thickness can be reduced when using high strength steels but without reducing the load capacity. The forming of these steels is more difficult due to the special springback behaviour. Furthermore the dent resistance shows an important role especially for outer panel parts. One influencing factor on the material behaviour is the Young's modulus, which will be discussed in this paper.  相似文献   

6.
High strength low alloy steels are used in many different engineering areas. A commonly used joining technique for those steels is fusion welding. Generally, these components have to withstand fatigue due to dynamic loading. Using thermal joining techniques affect the mechanical properties of the steel. This study focuses on the influence of the heat input on the microstructure of high strength low alloy steels (S690). Furthermore, the fatigue behaviour with special regard to crack initiation and crack propagation is characterized.  相似文献   

7.
The impact properties of hot rolled carbon steel(used for the manufacture of reinforcement steel bars) and the quenched & tempered(Q&T) low alloy steel(used in the pressure vessel industry) were determined.The microstructure of the hot rolled carbon steel contained ferrite/pearlite phases,while that of the quenched and tempered low alloy steel contained bainite structure.Impact properties were determined for both steels by instrumented impact testing at temperatures between-150 and 200 C.The impact properties comprised total impact energy,ductile to brittle transition temperature,crack initiation and propagation energy,brittleness transition temperature and cleavage fracture stress.The Q&T low alloy steel displayed much higher resistance to ductile fracture at high test temperatures,while its resistance to brittle fracture at low test temperatures was a little higher than that of the hot rolled carbon steel.The results were discussed in relation to the difference in the chemical composition and microstructure for the two steels.  相似文献   

8.
The production and processing of sheet metals of high‐strength steels, titanium, aluminum or magnesium alloys is investigated intensively at universities and in the industry. The main emphasis is put for example on the aluminum space frame concept as well as on the succeeding projects of the ULSAB‐study in the field of the steel sheet metals. Within this article the qualification of the above mentioned materials for the application as deep‐drawing materials will be discussed. The aim of the development for new deep‐drawing sheet metals is to decrease the elastic part of the forming, which means to lower the yield point. A high elastic portion would cause a high resilience after the forming of the sheet metals and therefore an increased requirement of force and form error during the forming process. Furthermore the optimized sheet metal material should have a great uniform elongation, so that it can be plastically deformed in a wide range. The beginning of the deformation should be possible at low forming forces but due to the deformation an increase of the hardening should be caused, so that the finished component has high strength. But it is not possible to realize both aims, high strength and great uniform elongation, at the same time.  相似文献   

9.
邓云华  岳喜山  管志超 《材料导报》2018,32(14):2425-2430
采用镍基BNi2钎料钎焊制备了304不锈钢消音蜂窝,对蜂窝芯体与面板钎焊界面组织和蜂窝的力学性能进行了分析和测试,并研究了钎焊热循环次数对钎焊界面组织和蜂窝拉伸力学性能的影响,为实际工程应用确定未焊合缺陷补焊次数提供了依据。液态钎料的毛细作用使钎料沿蜂窝芯箔材表面铺展并与箔材发生显著的元素扩散反应,蜂窝芯与面板之间的钎缝由Ni、Cr、Si等互溶而成的Ni基固溶体组织组成,未生成脆性共晶组织或金属间化合物。钎料中的B和Si元素显著扩散于面板材料中,形成钎料-面板反应区,因B元素的沿晶界快速扩散效应,面板侧组织呈现晶界元素渗入特征。随着钎焊次数增加,钎料对母材的溶解和晶界渗透增加,钎焊界面组织发生显著变化。制备的304不锈钢消音蜂窝拉脱强度为7.21MPa,呈现板/芯界面附近蜂窝芯破坏特点,多次钎焊时蜂窝拉脱强度呈下降趋势。制备的304不锈钢消音蜂窝平压、侧压和弯曲力学性能测试过程均经历弹性变形、塑性变形和失稳三个阶段,强度值分别为5.67MPa、33.85MPa和105.87MPa,平压和弯曲失效模型为蜂窝失稳,侧压破坏除蜂窝失稳外,发生穿孔面板与蜂窝芯体剥离的现象。鉴于多次钎焊热循环对蜂窝拉脱强度的不利影响,建议304不锈钢蜂窝钎焊缺陷的最大补焊次数为一次。  相似文献   

10.
The stress–strain response of some materials, such as advanced high strength steels, during unloading is nonlinear after the material has been loaded into the plastic deformation region. Upon reloading, the response shows a nonlinear elastic response that is different from that in unloading. Therefore, unloading–reloading of these materials forms a hysteresis loop in the elastic region. The Quasi-plastic–elastic model (Sun and Wagoner, 2011) was modified and combined with both isotropic-nonlinear kinematic hardening and two-surface plasticity models to simultaneously describe the nonlinear unloading response and complex cyclic response of sheet metals in the plastic region. The model was implemented as user-defined material subroutines, i.e. UMAT and VUMAT, for ABAQUS/Standard and ABAQUS/Explicit finite element codes, respectively. Uniaxial loading-unloading tests were performed on three common grades of automotive sheet steel: DP600, DP980 and TRIP780 steel. The model was verified by comparing the predicted material response with the corresponding experimental response. Finally, the model was used to predict the springback of a U-shape channel section formed in a plane-strain channel draw process. The results showed that the model was able to considerably improve springback predictions compared to the usual assumption of linear elastic unloading.  相似文献   

11.
Determination of yield stress and Hall‐Petch coefficients of the tempering steel 42CrMo4 with different microstructure by means of indentation testing Yield stress of steels can be determined by tensile tests or by indentation testing. Indentation tests offer the advantage of measuring the yield stress of certain parts that otherwise could not be used to withdraw tensile samples. Furthermore, measurements in parts with a varying yield stress e.g. surface hardened steels can be carried out. This work investigates several methods of indentation tests to measure the yield stress of the tempering steel 42CrMo4. The yield stress of different microstructures is compared to results of tensile tests. Using the indentation test according to GOST 22762‐77 the Hall‐Petch coefficients of microstructures consisting of perlite and ferrite are determined. Thus the influence of grain size and distance of perlite lamellas on the yield stress can be taken into account.  相似文献   

12.
The viability of single edge cracked sheet test method for rapidly determining the crack propagation characteristics of steel wires was investigated. First, fatigue tests under 3 different stress ratios were conducted on the sheet specimens which were manufactured from a kind of widely used cable wires. The test data were analysed, and the crack growth rates of sheet specimens were constructed by Walker model. Then, a series of fatigue tests were performed on notched round‐bar specimens to verify the predictability of Walker model parameters. Moreover, the experimental results obtained in different studies on crack propagation characteristics of steel wires were discussed. The results show that the crack propagation characteristics of sheet specimens behave a certain dependence on depth. The sheet crack growth laws can be well used to predict the fatigue life of notched bar specimens when the mechanical heterogeneity is considered. For bridge cable steels, the rational values for the exponent parameter of Paris law, m, should be close to 3.  相似文献   

13.
Within the frame of this work, the mechanical behaviour of a bimodal ferritic 12Cr‐ODS steel as well as of a ferritic‐martensitic 9Cr‐ODS steel under alternating load conditions was investigated. In general, strain‐controlled low‐cycle fatigue tests at 550°C and 650°C revealed similar cyclic stress response. At elevated temperatures, the two steels manifest transitional stages, ie, cyclic softening and/or hardening corresponding to the small fraction of the cyclic life, which is followed by a linear cyclic softening stage that occupies the major fraction of the cyclic life until failure. However, it is clearly seen that the presence of the nano‐sized oxide particles is certainly beneficial, as the degree of cyclic softening is significantly reduced compared with non‐ODS steels. Besides, it is found that both applied strain amplitude and testing temperature show a strong influence on the cyclic stress response. It is observed that the degree of linear cyclic softening in both steels increases with increasing strain amplitude and decreasing test temperature. The effect of temperature on inelastic strain and hence lifetime becomes more pronounced with decreasing applied strain amplitude. When analysing the lifetime behaviour of both ODS steels in terms of inelastic strain energy calculations, it is found that comparable inelastic strain energies lead to similar lifetimes at 550°C. At 650°C, however, the higher inelastic strain energies of 12Cr‐ODS steel result in significant lower lifetimes compared with those of the 9Cr‐ODS steel. The strong degradation of the cyclic properties of the 12Cr‐ODS steel is obviously linked to the fact that the initial hardening response appears significantly more pronounced at 650°C than at 550°C. Finally, the obtained results depict that the 9Cr‐ODS steel offers higher number of cycles to failure at 650°C, compared with other novel ODS steels described in literature.  相似文献   

14.
In order to meet the requirements of micro cold forming tools, a new co‐spray forming process has been applied to produce graded materials from two different tool steels in this study. The two steel melts were atomized and co‐sprayed simultaneously onto a flat substrate, resulting in a flat graded deposit when the two sprays were overlapped. To eliminate porosity and break up carbide network, the graded deposits were further hot rolled. The resultant graded tool steels were investigated with respect to porosity, element distribution, microstructure, hardness, strength, and toughness. The degree of overlapping of the two sprays determined the concentration gradient of the chemical elements in the deposits. The overlapping of the spray cones also contributed to low porosity in the gradient zone of the deposits. The porosity in the graded deposits could be essentially eliminated by means of hot rolling. The carbides and grain structures of the hot rolled tool steels were fine and homogeneous. By means of combining different tool steels in a single deposit, different microstructures and properties were combined.  相似文献   

15.
对硼钢进行电化学充氢和低应变率拉伸,分别画出了纯剪切、单向拉伸及近似平面应变状态下淬火态硼钢充氢前后的应力-应变曲线,并基于等效塑性应变量化了硼钢的氢脆敏感性,研究了应力三轴度对淬火态硼钢的力学性能和氢脆敏感性的影响。用SEM及EBSD表征试样断口的微观组织,根据淬火态硼钢充氢前后断裂模式的变化分析了硼钢在不同应力状态下的氢脆机理。结果表明,淬火态硼钢在剪应力状态下的氢脆机理与拉伸应力状态显著不同,使其氢脆敏感性比拉伸应力状态显著降低。  相似文献   

16.
High strength steels combine good formability with excellent mechanical properties and have developed continuously in recent years. Joining these materials is however increasingly difficult as fusion joining processes destroy the carefully constructed microstructure. To counteract this problem, joining processes which require less heat input have been investigated. Laser brazing is a relatively new technique and a potential candidate which has found application in the automotive industry.  相似文献   

17.
A new route to fabricate ultrafine grained (UFG) ferritic steel sheets without severe plastic deformation is proposed in this article. A low-carbon steel sheet with a duplex microstructure composed of ferrite and martensite was cold-rolled to a reduction of 91% in thickness, and then annealed at 620–700 °C. The microstructure obtained through the process with annealing temperatures below 700 °C was the UFG ferrite including fine cementite particles homogenously dispersed. The grain size of ferrite matrix changed from 0.49 to 1.0 μm depending on the annealing temperature. Dynamic tensile properties of the produced UFG steels were investigated. The obtained UFG ferrite–cementite steels without martensite phase showed high strain rate sensitivity in flow stress. The UFG ferritic steels are expected to have high potential to absorb crash energy when applied to automobile body.  相似文献   

18.
Mechanical properties of high strength steel welded joints strictly depend on the welding process, the filler material composition and the welding geometry. This study investigates the effects of using cored and solid welding wires and implementing various groove angles on the mechanical performance of weld joints which were fabricated employing the gas metal arc welding process. It was found that weld joints of low alloy, high strength steels using low alloy steel cored welding wires exhibited higher tensile strength than that of low alloy steel solid wire and chromium‐nickel steel bare welding wire when the method of gas metal arc welding is employed. The effect of groove angle on the strength and toughness of V‐groove and double V‐groove butt‐joints was investigated. V‐groove joints, with higher tensile strength than double V‐groove joints in the whole range of groove angles, were superior in toughness for small groove angles, but impact toughness values of both joints were comparable for large angles. The effect of heat input and cooling rate on the weld microstructure and weld strength was also investigated by performing thermal analysis employing the commercial software ANSYS. It was concluded that cooling rate and solidification growth rate determined the microstructure of the weld zone which had great consequences in regard to mechanical properties.  相似文献   

19.
20.
In the present paper the influence of the temperature and strain rate on the stress strain behaviour of two different steels were investigated. Two microstructures were considered: pearlitic and austenitic. Tensile tests with the bearing steel 100Cr6 and the case hardening steel 20MnCr5 were accomplished at various temperatures. For this purpose the Ludwik equation was used to describe the stress‐strain curve. The parameter of the constitutive equation was determined for each steel and microstructure. Especially for the austenitic state the parameters of the used material law were described as a function of the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号