首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Using sulfonium groups to create a novel fiber material, methionine‐containing hybrid fibers were prepared from S‐methylated poly(L ‐methionine) and poly(L ‐lysine, L ‐methionine) solutions with gellan solution by polyion complex (PIC) formation via self‐assembly at the aqueous interface. The breaking strain of the PIC fibers were increased by incorporation of methionine residues into the poly(L ‐lysine). These findings may provide a new approach for preparing a wool‐like fiber in aqueous media using the synthetic water‐soluble methionine‐containing poly(amino acid)s.

SEM image of Met‐containing PIC fiber: (a) poly[Met19Met(SMe)81]‐gellan fiber (magnification, ×500).  相似文献   


2.
A microfluidic system was designed, fabricated and implemented to study the behavior of polyelectrolyte capsules flowing in microscale channels. The device contains microchannels that lead into constrictions intended to capture polyelectrolyte microcapsules which were fabricated with the well‐known layer‐by‐layer (LbL) assembly technique. The behavior of hollow capsules at the constrictions was visualized and the properties of the capsules were investigated before and after introduction into the device.

Time series of video frames showing capsules being compressed into a constriction.  相似文献   


3.
Summary: A novel human hair protein hybrid fiber was developed by combining (i) the high‐efficiency extraction technique for preparing human hair proteins and (ii) the watery hybridization spinning method using gellan and chitosan. The resulting human hair protein‐gellan‐chitosan hybrid fibers are conveniently produced by simply mixing the 7–35 wt.‐% human hair protein‐1.0 wt.‐% gellan aqueous solution and the 1.0 wt.‐% chitosan‐0.15 M acetic acid solution at 50 °C, followed by pulling out to spin the human hair protein‐gellan‐chitosan ternary complex thus formed at the aqueous solution interface. By use of this simple procedure and ambient spinning condition, the human hair proteins were successfully incorporated into the fiber matrix of gellan‐chitosan, without any denaturation and degradation. The hybrid fiber can also be recognized as a new type of the regenerated human hair keratin fiber, because of its high purity and content of human hair keratin types I and II. Mechanical strength of the human hair protein‐gellan‐chitosan fiber varies from 108 to 153 MPa, depending on the contents of the human hair proteins. SEM observation revealed that the incorporated human hair proteins were found as the particles (1–10 μm) on the fiber surface. The type I and II keratins in the fiber matrices were rapidly biodegraded by chymotrypsin within 30 min, and the digested fragments slowly released from the fiber matrices. Thus, the human hair hybrid fiber is a very promising material to have a broad spectrum of applications as the engineering fibers, particularly for the medical uses, because the human hair proteins are easily available, biocompatible, and bioresorbable materials.

Gellan‐chitosan hybrid fiber (a), human hair protein‐gellan‐chitosan hybrid fiber (b).  相似文献   


4.
In the present work, we report on the synthesis and characterization of poly(vinylidene fluoride) (PVDF) with N‐isopropylacrylamide (NIPAAM) polymer side chains from molecular graft copolymerization in solution. The copolymer can be readily cast into temperature‐sensitive microfiltration (MF) membranes by the phase inversion technique. The copolymer approach to membrane fabrication allows a much better control of the physicochemical nature of the membrane pores through the variation in graft concentration, membrane casting temperature and concentration of the membrane casting solution.

  相似文献   


5.
The influence of the stabilizer/SWNT ratio on the transport behavior of latex‐based polymer nanocomposites is examined in an effort to improve electrical conductivity while maintaining or improving the Seebeck coefficient (i.e., thermopower). Results show that phonon and electron transport are significantly affected by tube/tube junctions, and the carrier transport across the junctions can be manipulated by altering the stabilizer concentration. Electrical conductivity of composites containing 10 wt.‐% SWNT nearly doubles, becoming greater than 900 S · m?1, by changing the SWNT:GA ratio from 1:3 to 10:1, while thermal conductivity and Seebeck coefficient remain relatively constant (near 0.25 W · m‐K?1 and 40 µV · K?1, respectively).

  相似文献   


6.
The combination of benzyl bromide, sodium hydroxide and 15‐crown‐5 in tetrahydrofuran is shown to be an efficient method for installing benzyl groups at both the 4‐ and 6‐positions regioselectively directly from peracetylated N‐trichloroacetyl‐protected glucosamine and galactosamine. Application of this benzylation strategy proved to significantly shorten the synthetic route to hyaluronic acid tetra‐ and hexamers.

  相似文献   


7.
This paper reports on a temperature‐controlled, solution‐based method to prepare diamine crosslinked Matrimid aerogels. Addition of a diamine to a preheated polymer solution resulted in a well‐dispersed solution, allowing formation of a homogeneous gel upon cooling. The gels (studied by FTIR and AFM) were dried by solvent extraction with supercritical CO2. The resulting aerogels showed surface areas of approximately 150 m2 · g?1 and porosities of 0.66–0.69 mL · g?1 with polymer domains and pore sizes of tens of nanometers. A room temperature‐prepared, inhomogeneous aerogel gave approximately 250 m2 · g?1 and 0.31 mL · g?1 with meso‐ and micropores. SEM images of the aerogels show similar surface features as AFM images of the Matrimid solvent gels.

  相似文献   


8.
Using general‐purpose screws to process different types of material offers considerable cost advantages over special‐purpose screws. Designing screws of this type is generally a difficult task, since modifications to different aspects of the geometry can run counter to each other in some cases. Optimization software is thus of particular benefit here. For this reason, a program was developed for the optimization of general‐purpose screws. A central feature of this program is an appraisal system for the computer‐aided evaluation of single‐screw simulations. The performance of the software was verified on the basis of actual extrusion experiments.

Temperature measuring cross for measuring thermal homogeneity.  相似文献   


9.
The functionalization of polystyrene/poly(ethylene glycol) TentaGel® microbeads (d = 20 μm) with 2,2′:6′,2″‐terpyridine units is described resulting in a material with easily accessible ligands which possess an excellent affinity for transition metal ions. The subsequent loading with different metal ions via metal‐to‐ligand complexation yielded the corresponding CoII, NiII, FeII, and CuII modified beads. The isolated materials were investigated in detail utilizing UV/vis spectroscopy, optical microscopy, atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Moreover, grafting of free terpyridine moieties via ruthenium(II )/ruthenium(III )‐chemistry onto the beads is demonstrated. This opens‐up new pathways for the selective modification of such microbeads and the preparation of functional materials.

Scheme of the formation of bis‐terpyridine‐metal complexes bound to polystyrene/poly(ethylene glycol) TentaGel® microbeads.  相似文献   


10.
Summary: Novel light‐sensitive hollow capsules were fabricated from the small molecule 3‐sulfopropylacrylate potassium (SPA) and poly(allylamine hydrochloride) (PAH). With UV irradiation, SPA could be photopolymerized in the wall of hollow capsules. After photopolymerization the capsule size and surfaces showed pronounced differences. The capsules became much more rigid as indicated by an increase in the modulus of more than a factor of 5.

CLSM image of SPA/PAH hollow capsule emission at 554 nm, from rhodamine B after photopolymerization.  相似文献   


11.
The serviceability of non‐return valves has a major influence on the productivity of the injection molding process. During a meeting of experts held at our Institute, it was seen that closing behavior and wear are the key problems encountered in practice. The conducted investigations to tackle these questions have shown that both an improved closing behavior and a lower level of wear can be achieved by reducing the inside radius of the locking ring.

Pressure profile over the length of a non‐return valve (n = 0.4; = 25 000 mm3/s).  相似文献   


12.
The selective copper‐catalyzed borylation of silylalkynes in the presence of a diboron reagent and methanol produced a variety of (Z)‐β‐(borylvinyl)silanes. The appropriate use of a selective ligand for copper allows the chemo‐, regio‐, and stereoselective monoborylation of silylalkynes. The β‐regioselectivity of an N‐heterocyclic carbene (NHC)‐copper catalyst was investigated by DFT calculations.

  相似文献   


13.
Poly(methyl‐co‐trifluoropropyl)silsesquioxanes (P(M‐co‐TFP)SSQs) were prepared using methyltrimethoxysilane (MTMS) and trifluoropropyltrimethoxysilane (TFPTMS). The molecular weight, microstructure of the copolymers and properties of their thin films have been changed by adjusting reaction parameters such as the molar ratio of water to silane, the molar ratio of catalyst to silane, reaction time, solvent content, and temperature. The refractive index of the copolymer thin film decreased from 1.404 to ca. 1.348 as curing temperature was increased to 420 °C. The dielectric constant of the film decreased with an increase of the molecular weight of the copolymer, and the lowest dielectric constant obtained was ca. 2.2. Hardness and elastic modulus of the thin films were 0.7 and 5 GPa, respectively. Crack velocity was measured to be 10?11 m/s at the film thickness of around 0.9 μm under aqueous environment.

  相似文献   


14.
Poly(methyl methacrylate)‐poly(ε‐caprolactone) (PMMA/PCL) microparticles were synthesized by suspension polymerization of methyl methacrylate in the presence of PCL. The incorporation of a small amount of a macromonomer, methacryloyl‐terminated PCL (M‐PCL), into the reaction mixture, led to the formation of grafted systems, namely PMMA‐g‐PCL/PCL. The synthesis of the macromonomer and its characterization by nuclear magnetic spectroscopy (1H NMR) is described. The role of M‐PCL as an effective compatibilizing agent in the composite was investigated. PMMA/PCL and PMMA‐g‐PCL/PCL composites were fully characterized by 1H NMR, gel permeation chromatography (GPC) and thermal analysis, including thermogravimetric analysis (TGA), conventional differential scanning calorimetry (DSC), modulated DSC (MDSC) and dynamic mechanical thermal analysis (DMTA). Finally, the morphology of the prepared systems was investigated by scanning electron microscopy (SEM). The addition of compatibilizing agent led the formation of a more homogeneous microcomposite with improved mechanical properties.

SEM picture of PMMA‐g‐PCL/PCL composite surface.  相似文献   


15.
Pressure‐sensitive adhesives (PSA) were microencapsulated using simple and complex coacervation and aminoplaste. The microcapsules thus prepared were characterized by FTIR spectroscopy, particle size distribution, rheological behavior, and peeling tests. The microcapsules were isolated and found to be out of sticky indicating that the PSAs were indeed encapsulated. The prepared suspensions were deposited at the surface of a paper sheets and the dried labels were then pressed against each other. The ensuing complex was then characterized in terms of peeling forces and showed that the encapsulation using aminoplaste technique of a commercial PSA yielded peel energy of 170 J · m?2, which constitutes the recovering of about 68% of the adhesive power of the original nonencapsulated PSA.

  相似文献   


16.
The 2‐ethoxycarbonylallyl 5‐(1,2‐dithiolane‐3‐yl)‐pentanoate monomer (AODS) includes in its molecular structure C?C and S? S reactive bonds allowing it to behave as a bi‐functional monomer, possessing two groups, however, with different reactivity for use in polymer chain building. The polymerization‐specific features of this monomer are the absence of auto‐acceleration and polymer chain crosslinking. Polymerization proceeds readily through most free‐radical initiators. One exception, carboxy‐peroxides are rapidly decomposed without the production of free radicals. AODS is partially converted to a gel without the consumption of double bonds during monomer dissolution in certain organic solvents and after being mixed in solution with carboxy‐peroxides. The determined AODS‐co‐MMA copolymerization parameters are r1 = 2.61, r2 = 0.23 if Luperco peroxide is used as a polymerization initiator, and r1 = 2.71, r2 = 0.38 if AIBN is used.

  相似文献   


17.
Coaxial electrospinning using surfactants as sheath fluid for preparing high‐quality polymer nanofibers is studied. PAN nanofibers are fabricated using this process with Triton X‐100 solutions in DMF. FESEM demonstrates that the Triton X‐100 solution has a significant influence on the quality of the nanofibers. The nanofiber diameters can be controlled by adjusting the concentration of Triton X‐100 in the sheath fluids with a scaling law D = 640 C?0.32. The mechanism of the influence of Triton X‐100 solutions on the formation of PAN fibers is discussed and it is demonstrated that coaxial electrospinning with surfactant solution is a facile method for achieving high‐quality polymer nanofibers.

  相似文献   


18.
Summary: Hydrogels of high‐molecular‐weight poly(ethylene oxide) (PEO) have been obtained in situ by applying a very simple procedure that involves UV cross‐linking of PEO in aqueous solution. The efficiency of the photoactivated cross‐linking of thin layers of PEO in aqueous solution in the presence of (4‐benzoylbenzyl) trimethylammonium chloride as a photoinitiator has been determined at room temperature and in a frozen state (?25 °C). It was found that the efficiency varies with the concentration of PEO solution, the molecular weight of PEO, and especially with the temperature. When the UV cross‐linking was performed in the frozen state, porous hydrogels with very high yield of gel fraction (above 90%) and high cross‐linking density were obtained. After drying the hydrogels, films of 50–150 μm thickness were prepared. The films swell extremely fast in water and act as asymmetric membranes.

SEM of a dried PEO hydrogel obtained by UV cross‐linking of an aqueous solution at room temperature.  相似文献   


19.
The influence of nucleating agents (AClyn®, Surlyn® and sodium benzoate (SB)) alone and together with nucleating promoter (Ceraflour® 993 and Ceraflour® 991 and poly(1,4‐butylene sebacate)) on the crystallization and morphology of poly(ethylene 2,6‐naphthalene dicarboxylate) (PEN) was investigated by means of differential scanning calorimeter, polarized optical microscopy and small angle light scattering. It was revealed that AClyn, Surlyn and SB effectively accelerate nucleation and crystallization of PEN with increasing the ratio of nucleating agent up to 1 wt.‐%. A combination of nucleating agent and nucleating promoter leads to further increase in crystallization rate at low temperature, but only a slight change at high temperature. Hedrites were obtained in pure PEN and the addition of SB and Ceraflour 993 produces small crystals with poor perfection upon crystallization in high temperature region. When crystallization temperature was below 210 °C, spherulites were observed in pure PEN and also in the samples of PEN/Ceraflour 993 and PEN/SB but with smaller size.

Crystal morphology of PEN crystallized at 240 °C for 40 min.  相似文献   


20.
A novel N‐succinylchitosan‐graft‐polyacrylamide/attapulgite composite hydrogel was prepared by using N‐succinylchitosan, acrylamide and attapulgite through inverse suspension polymerization. The result from FTIR spectra showed that ? OH of attapulgite, ? OH and ? NHCO of N‐succinylchitosan participated in graft polymerization with acrylamide. The introduced attapulgite could enhance thermal stability of the hydrogel. Scanning electron microscopy observation indicates that the composite hydrogel has a microporous surface. The volume ratio of heptane to water, weight ratio of acrylamide to N‐succinylchitosan and attapulgite content have great influence on swelling ability of the composite hydrogel. The composite hydrogel shows higher swelling rate and pH‐sensitivity compared to that of without attapulgite.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号