首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The encapsulation in lipospheres and in liposomes was used with the aim of masking the bitterness of casein hydrolysates for dietetic of pharmaceutical purposes. Papain was used for preparing three casein hydrolysates, employing different temperatures and E:S ratios. The percentage of encapsulation of these preparations was measured by second derivative spectrophotometry (SDS). Lipid oxidation over a period of 60 days, was followed by quantifying the 2-thiobarbituric acid reactive substances (TBARS). Other analysis were performed for characterizing these vesicles, including the sensory evaluation and the measure of hydrophobicity. The results showed that these two encapsulation systems were equally efficient in reducing the hydrophobicity and the bitterness of casein hydrolysates. SDS was a useful tool in the characterization of these preparations. It is a quick and relatively low-cost method, and indicated that the encapsulation rate in lipospheres (65%) was higher than in liposomes (59%). The TBARS method revealed the chemical stability of these preparations over the period of study (60 days).  相似文献   

2.
Glutaminase (EC 3.5.1.2) was applied in this work to induce deamidation and hydrolysis of casein. Some reaction conditions based on casein deamidation were studied. Three casein hydrolysates with degree of deamidation of 2.8%, 5.8% and 8.5%, or degree of hydrolysis of 2.5%, 3.4% and 4.9%, respectively, were prepared at casein concentration 5% (w/v), glutaminase addition level 400 U kg?1 casein, reaction temperature 37 °C and reaction times 6, 12 and 24 h, respectively. Evaluation results showed that when iron (II) was added at 60 μm , iron (II)‐chelating powers of three hydrolysates were 41.1, 45.4 and 55.3%, while that of original casein and EDTA were 36.1 and 13.6%. Calcium (II)‐chelating power of three hydrolysates was 1.23, 1.41 and 1.49 mmol g?1 casein, whereas that of original casein was 1.05 mmol g?1 casein. Three hydrolysates also had ACE‐inhibitory activity in vitro, with IC50 values from 0.75 to 2.34 mg mL?1.  相似文献   

3.
Impacts of plastein reaction on bitterness, physicochemical and antioxidant properties of salmon frame hydrolysate with the aid of various proteases (alcalase and papain) at different concentrations and varying reaction temperatures were investigated. Plastein was produced from hydrolysate by papain at 40°C, which had 30% degree of hydrolysis (30DHP). Rearrangement of peptides in hydrolysate was performed by 1% papain at 40°C for 10 h, yielding plastein namely ‘30DHP-P1’. It showed the lowest bitterness (P < 0.05) than other plasteins and hydrolysates. Surface hydrophobicity was not related well with bitterness. Therefore, the size of peptides also determines the bitterness. 30DHP-P1 had augmented solubility; however, its antioxidant activities (DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power) were slightly lower (P < 0.05) than those of hydrolysates. Bitterness of hydrolysate was markedly debittered via plastein reaction under optimal condition. Plastein generally had lighter colour and still possessed antioxidant activity.  相似文献   

4.
Casein hydrolysates with a degree of hydrolysis of 13.5% were prepared by hydrolyzing casein with an alkaline protease Alcalase, and showed ACE-inhibition in vitro with an IC50 value of 45.2 μg/mL. The hydrolysates were modified by plastein reaction catalyzed by a neutral protease Neutrase to reveal the impact of the coupled Neutrase-catalyzed plastein reaction on the ACE-inhibition of the casein hydrolysates. The effects of addition level of Neutrase, substrate concentration, reaction temperature, and time on the plastein reaction of the casein hydrolysates were studied with the varying amount of free amino groups of the modified hydrolysates as index. The results illustrated that the amount of free amino groups of the modified hydrolysates increased in all occasions, and the addition level of Neutrase, substrate concentration, and reaction time had a clear impact on the plastein reaction. Six modified hydrolysates were prepared at a substrate concentration of 40% (by weight), Neutrase addition level of 3 kU/g peptides, reaction temperature of 35°C, and different reaction time. The assay results highlighted that the coupled Neutrase-catalyzed plastein reaction improved the ACE-inhibition of six modified hydrolysates with IC50 values ranging from 15.6 to 20.0 μg/mL. Size exclusion chromatography analysis showed that some plasteins with a molecular weight of about 68 kDa existed in the modified hydrolysates. The results also demonstrated that it was the coupled Neutrase-catalyzed plastein reaction but not further hydrolysis of casein hydrolysates that enhanced the ACE-inhibition of the modified casein hydrolysates.  相似文献   

5.
《Journal of dairy science》2022,105(3):1878-1888
Bioactive peptides derived from milk proteins are widely known to possess antibacterial activities. Even though the antibacterial effects of milk-derived peptides are widely characterized, not much focus is given to their antifungal characterization. Therefore, in this study, we investigated the antifungal properties of camel and cow whey and casein hydrolysates against various species of pathogenic Candida. The hydrolysates were produced using 2 enzymes (alcalase and protease) at differing hydrolysis durations (2, 4, and 6 h) and tested for their antifungal properties. The results showed that intact cow whey and casein proteins did not display any anti-Candida albicans properties, whereas the alcalase-derived 2 h camel casein hydrolysate (CA-C-A2) displayed a higher percentage of inhibition against Candida albicans (93.69 ± 0.26%) followed by the cow casein hydrolysate generated by protease-6 h (Co-C-P6; 81.66 ± 0.99%), which were significantly higher than that of fluconazole, a conventional antifungal agent (76.92 ± 4.72%). Interestingly, when tested again Candida krusei, camel casein alcalase 2 and 4 h (CA-C-A2 and CA-C-A4), and cow whey alcalase-6 h (CO-W-A6) hydrolysates showed higher antifungal potency than fluconazole. However, for Candida parapsilosis only camel casein alcalase-4 h (Ca-C-A4) and cow casein protease-6 h (Co-C-P6) hydrolysates were able to inhibit the growth of C. parapsilosis by 19.31 ± 0.84% and 23.82 ± 4.14%, respectively, which was lower than that shown by fluconazole (29.86 ± 1.11%). Overall, hydrolysis of milk proteins from both cow and camel enhanced their antifungal properties. Camel milk protein hydrolysates were more potent in inhibiting pathogenic Candida species as compared with cow milk protein hydrolysates. This is the first study that highlights the antifungal properties of camel milk protein hydrolysates.  相似文献   

6.
The bitter peptide fraction present in casein hydrolysates obtained by using three proteases (subtilisin, papain and trypsin) was treated with aminopeptidase T from Thermus aquaticus YT-1. The bitterness of the bitter peptide fraction could be decreased, and it sometimes disappeared completely, with an increase in free amino acids. The percentages of total free amino acids released from each bitter peptide fraction (subtilisin, papain and trypsin) by aminopeptidase digestion for 20 hr were approximately 11%, 8.7%, and 6.5%, respectively. Bitter peptide (αs1-CN f91-100) was isolated from a tryptic hydrolysate of casein by HPLC, its threshold value of bitterness being 2.9 ppm (w/v). The peptide (αs1-CN f96-100) obtained from the amino peptidase digestion of this bitter peptide showed no bitterness.  相似文献   

7.
The preparation method of casein hydrolysates with high ACE-inhibitory activity was studied by Alcalase-catalyzed hydrolysis coupled with plastein reaction. Casein hydrolysates with an IC50 value of about 47 μg mL−1 were first prepared by hydrolysis of casein with Alcalase and then modified with plastein reaction catalyzed by the same enzyme. The impacts of four reaction conditions on plastein reaction of casein hydrolysates were studied, and then optimal conditions were determined using response surface methodology with the decrease of free amino groups in the reaction mixture as response. When the concentration of casein hydrolysates was fixed at 35% by weight, the maximum decrease of free amino groups in the reaction mixture of 181.8 μmol g−1 proteins was obtained. The optimum conditions for the above decrease were found to be an E/S ratio of 7.7 kU g−1 proteins, reaction temperature of 42.7 °C and reaction time of 6 h. Analysis results showed that ACE-inhibitory activity of casein hydrolysates prepared could be improved significantly by plastein reaction. When casein hydrolysates were modified by plastein reaction, with a decrease of free amino groups in the mixture of about 154.7 μmol g−1 proteins and 181.8 μmol g−1 proteins, their IC50 values could be decreased to 0.6 and 0.5 μg mL−1.  相似文献   

8.
Fish oil was encapsulated with gum arabic/casein/beta‐cyclodextrin mixtures using spray drying. The processing parameters (solids concentration of the barrier solutions, ratio of oil to barrier materials, emulsifying temperature, and air inlet temperature) were optimized based on emulsion viscosity, emulsion stability, encapsulation efficiency, and yield. A suitable viscosity and high emulsion stability could increase encapsulation efficiency and yield. Encapsulation efficiency and yield were significantly affected by all the 4 parameters. Based on the results of orthogonal experiments, encapsulation efficiency and yield reached a maximum of 79.6% and 55.6%, respectively, at the optimal condition: solids concentration of 35%, ratios of oil to barrier materials of 3:7, emulsifying temperature of 55 °C, and air inlet temperature of 220 °C. Scanning electron microscopy analysis showed that fish oil microcapsules were nearly spherical with a smooth surface with droplet size ranging from 1 to 10 μm.  相似文献   

9.
The utilization of protein hydrolysates in food systems is frequently hindered due to their bitterness and hygroscopicity. Spray drying technology could be an alternative for reducing these problems. The aim of this work was to reduce or to mask the casein hydrolysate bitter taste using spray drying and mixtures of gelatin and soy protein isolate (SPI) as carriers. Six formulations were studied: three with 20% of hydrolysate and 80% of mixture (gelatine/SPI at proportions of 50/50, 40/60 and 60/40%) and three with 30% of hydrolysate and 70% of mixture (gelatine/SPI at proportions of 50/50, 40/60 and 60/40%). The spray-dried formulations were evaluated by SEM, hygroscopicity, thermal behavior (DSC), dissolution, and bitter taste, by a trained sensory panel using a paired-comparison test (free samples vs. spray-dried samples); all samples were presented in powder form. SEM analysis showed mostly spherically shaped particles, with many concavities and some particles with pores. All formulations were oil and water compatible and showed lower hygroscopicity values than free casein hydrolysate. At Aw 0.83, the free hydrolysate showed Tg about 25 °C lower than the formulations, indicating that the formulations may be more stable at Aw ≥ 0.65 since the glass transition should be prevented. The sensory panel found the formulations, tasted in the powder form, to be less bitter (P < 0.05) than the free casein hydrolysate. These results indicated that spray drying of casein hydrolysate with mixtures of gelatin and SPI was successful to attenuate the bitterness of casein hydrolysate. Thus, spray drying widens the possibilities of application of casein hydrolysates.  相似文献   

10.
为了探寻降低谷朊粉酶解产物苦味的方法,通过添加不同浓度的乙醇(5%、10%和15%),研究其对碱性蛋白酶酶解产物苦味值、游离氨基酸和相对分子质量分布的影响,以及在乙醇存在下碱性蛋白酶、中性蛋白酶以及风味蛋白酶3种复配酶解体系所制得的酶解产物的苦味值和相对分子质量分布变化。结果表明:加入乙醇后,在相同的水解度下(DH),碱性蛋白酶的酶解产物苦味值降低,并与加入乙醇的浓度呈负相关。添加乙醇后,相对分子质量小于1 000的组分含量显著(P0.05)降低,游离疏水性氨基酸(Pro,Ile,Phe和Met)显著(P0.05)增加。添加乙醇后,3种复配酶解体系酶解产物苦味降低,相对分子质量小于1 000的组分含量显著(P0.05)降低。与添加碱性蛋白酶单一酶解相比,在相同的水解度下3种酶复配酶解产物的苦味值进一步降低。添加低浓度乙醇对3种酶的活性影响较小。  相似文献   

11.
Milk protein concentrate was pretreated either by microwave irradiation or by ultrasound before initiation of 3‐h enzymatic hydrolysis. The duration of pretreatment ranged from 1 to 8 min at a power level of 800 W, with the control not being subjected to any pretreatment, and five enzymes (Alcalase, Trypsin, Neutrase, Alkaline Protease and Flavourzyme) were employed. The effects of microwave and ultrasound pretreatments on the kinetics and degree of hydrolysis, protein solubility, bitterness and angiotensin‐converting enzyme inhibitory activity were evaluated. Pretreatments increased the degree of hydrolysis and stabilised the solubility of the hydrolysates but could not significantly reduce bitterness of the hydrolysates The angiotensin‐converting enzyme inhibitory activity of the hydrolysates were improved with 5‐min ultrasound‐pretreated Neutrase hydrolysates giving IC50 value of 0.23 mg mL?1. Kinetic parameters showed improved catalytic efficiencies. Pretreatments of milk protein concentrates with either microwave or ultrasound significantly improve the bioactivity and functional characteristics of the resulting hydrolysates.  相似文献   

12.
酪蛋白水解物的酶法修饰与ACE抑制活性变化   总被引:7,自引:2,他引:5  
利用枯草杆菌碱性蛋白酶水解酪蛋白制备酪蛋白水解物,其水解度为11.2%,IC50为47.1μg/mL。再应用相同的酶对酪蛋白水解物进行类蛋白反应修饰,考察底物浓度、温度和酶添加量对类蛋白反应的影响,并制备5个不同的修饰产物测定其ACE抑制活性和IC50值。结果表明,修饰产物的ACE抑制活性随修饰程度(游离氨基减少量)的增加而提高,并且都高于未经修饰的酪蛋白水解物。当游离氨基减少量为154.65μmol/g(蛋白)时,修饰产物的IC50值可降至0.6μg/mL。毛细管电泳分析结果显示类蛋白修饰后水解物的多肽组成情况发生明显变化。研究结果证明酪蛋白水解物的ACE抑制活性可以通过类蛋白反应的修饰作用而提高。  相似文献   

13.
In this study, fishery by‐catch protein (Decapterus maruadsi) was first thermal treated (60–100 °C), phosphorylated (0.5–4.0 g g?1 protein) or succinylated (0.05–0.3 g g?1 protein) before hydrolysis to prevent the bitterness of the resulting hydrolysate. Hydrolysis was performed at 50 °C, 10 h, pH 8.0 by Alcalase. Results showed that thermal treatment upon 80 °C, succinylation and phosphorylation resulted in significant decrease in amino acid content and increase in larger peptide content (>1450 Da). Succinylation did not reduce the bitterness as a result of higher content of small peptides (<550 Da), which was found to be correlated positively with the bitterness of hydrolysates. However, thermal treatment, especially phosphorylation, could reduce the bitterness to discernible level, indicating that phosphorylation before hydrolysis could be a potential means to prevent the evolution of bitter flavour which restricts the practical uses of the hydrolysates.  相似文献   

14.
ABSTRACT:  Although enzymatic hydrolysates of soy protein isolate (SPI) have physiological functionality, partially hydrolyzed SPI exhibits bitter taste depending on proteases and degree of hydrolysis (DH). To determine proteolysis conditions for SPI, it is important to evaluate bitterness during enzymatic hydrolysis. Taste dilution analysis (TDA) has been developed for the screening technique of taste-active compounds in foods. The objectives of the present study were to evaluate bitterness of enzyme-hydrolyzed SPI by TDA and to compare bitterness of SPI hydrolysates with respect to kinds of proteases and DH. SPI was hydrolyzed at 50 °C and pH 6.8 to 7.1 to obtain various DH with commercial proteases (flavourzyme, alcalase, neutrase, protamex, papain, and bromelain) at E/S ratios of 0.5%, 1%, and 2%. The DH of enzymatic hydrolysates was measured by trinitrobenzenesulfonic acid method. The bitterness of enzymatic hydrolysates was evaluated by TDA, which is based on threshold detection in serially diluted samples. Taste dilution (TD) factor was defined as the dilution at which a taste difference between the diluted sample and 2 blanks could be detected. As DH increased, the bitterness increased for all proteases evaluated. Alcalase showed the highest TD factor at the same DH, followed by neutrase. Flavourzyme showed the lowest TD factor at the entire DH ranges. At the DH of 10%, TD factor of hydrolysate by flavourzyme was 0 whereas those by protamex and alcalase were 4 and 16, respectively. These results suggest that TDA could be applied for the alternative of bitterness evaluation to the hedonic scale sensory evaluation.  相似文献   

15.
Optimisation of enzymatic hydrolysis of β‐casein with cell envelope proteinase (CEP) from Lactobacillus acidophilus JQ‐1 to produce the angiotensin‐I‐converting enzyme (ACE) inhibitory peptides using response surface methodology (RSM). Under optimal conditions (enzyme‐to‐substrate ([E]/[S]) ratio (w/w) of 0.132 and pH of 8.00 at 38.8 °C), the ACE inhibitory activity of hydrolysates was 72.06% and the total peptides was 11.75 mg mL?1. Scanning electron microscopy (SEM) micrographs indicated that the tightness of the β‐casein surface structure was gradually weakened and small holes appeared after enzymatic treatment, while Fourier transform infrared spectroscopy (FTIR) spectra indicated remarkable changes in the chemical composition and macromolecular conformation of β‐casein after enzymatic hydrolysis. Differential scanning calorimetry (DSC) analysis indicated that the corresponding hydrolysates had higher thermal stability. The enzymatic hydrolysis also led to an increase in the free sulfhydryl content of β‐casein hydrolysates compared with raw β‐casein, which led to the increase in the antioxidant activity of β‐casein hydrolysates.  相似文献   

16.
Casein hydrolysates were prepared by hydrolysis of casein with alkaline protease Alcalase for 6 h and showed the highest ACE-inhibitory activity in vitro with an IC50 value of 47.1 μg mL−1. Casein hydrolysates prepared were subjected to Alcalase-catalyzed plastein reaction in the presence or absence of proline addition to prepare casein plasteins. Some optimal reaction conditions of plastein reaction in the presence of proline addition were studied using response surface methodology with the decrease in free amino groups in the casein plasteins as response. When the concentration of casein hydrolysates was fixed at 35% (w w−1) and reaction time at 6 h, the optimal conditions were reaction temperature 48 °C, addition level of proline 0.54 mol/mol free amino groups of casein hydrolysates and addition level of Alcalase 9.5 kU g−1 proteins. With these conditions, the maximal decrease in free amino groups in casein plasteins was 195.7 μmol g−1 proteins. The ACE-inhibitory activities of twelve casein plasteins in vitro, prepared in the presence or absence of proline addition with different reaction extents, were evaluated and compared. The results showed that the ACE-inhibitory activity of the casein plasteins prepared in the presence of proline addition changed irregularly, different to that of the casein plasteins prepared in the absence of proline addition, and might relate to the different linking of proline to the peptides in casein hydrolysates during plastein reaction. When the casein plasteins prepared in the presence of proline addition had a decrease in free amino groups 195.7 μmol g−1 proteins, the IC50 value of the casein plasteins was lowered to 0.2 μg mL−1.  相似文献   

17.
To select a kind of practical protease that can be used for the production of yak milk casein enzymatic hydrolysates with a high‐immunoregulating activity, the effects of casein trypsin, pepsin, alcalase hydrolysates and their separated fractions on the lymphoproliferation activity and Interleukin‐2 production of murine splenocytes in vitro were studied. Results showed that, compared with casein trypsin and pepsin hydrolysates, casein alcalase hydrolysate had higher immunoregulatory activity, degree of hydrolysis and peptide yield. The molecular weights of the separated fractions of casein hydrolysates were lower than 1,500 Da. Considering the low price and commercial availability in a large supply of alcalase, yak milk casein alcalase hydrolysate is more practical as a functional food ingredient in industry.  相似文献   

18.
吴丹  赵新淮 《食品科学》2009,30(21):283-287
采用木瓜蛋白酶对酪蛋白进行水解,得到抗氧化活性较好的酪蛋白水解物,并且水解物在木瓜蛋白酶作用下进行类蛋白反应制备出高活性酪蛋白抗氧化肽。第一步制备酪蛋白水解时酶添加量为500 U/g酪蛋白、温度45℃、底物浓度5%、反应时间2 h。第二步类蛋白反应的最优条件为:酶添加量为500 U/g水解物、温度30℃,底物浓度50%、作用时间5.5 h。毛细管电泳结果确认,类蛋白反应修饰后抗氧化肽的组成情况发生变化。抗氧化活性分析结果表明,类蛋白反应修饰后的酪蛋白抗氧化肽对两种自由基的清除能力显著提高。  相似文献   

19.
Tomohiro  Kodera  Minao  Asano  Noriki  Nio 《Journal of food science》2006,71(9):S609-S614
ABSTRACT:  Enzymatic hydrolysis is 1 means of improving the functional properties of food protein; however, in most cases, bitter peptides are generated by such treatment, and the resulting product is therefore not acceptable as a food ingredient. We have already reported a novel cysteine protease, D3, purified from germinating soybean cotyledons. Because of its substrate specificities, most hydrophobic amino acid residues in the hydrolysate are presumed not to be located at the peptide termini. It was therefore expected that protein hydrolysate by protease D3 would taste less bitter than other enzymatic hydrolysates. The objective of this study was to demonstrate the low bitterness of protein hydrolysates by protease D3. For that purpose, soy protein and casein hydrolysates were prepared with treatment of protease D3, subtilisin, pepsin, trypsin, and thermolysin, respectively. The bitterness of these hydrolysates was evaluated by measuring points of subjective equality (PSE). The PSE value demonstrated that the protein hydrolysates by protease D3 were significantly less bitter than the other enzymatic hydrolysates, indicating that the products had a taste mild enough to be acceptable as a less-bitter peptide food ingredient. These results suggested that a prominent feature of protease D3 was its capacity to produce less-bitter peptides. Therefore, it is thought that protease D3 could be applied to produce protein hydrolysates for use as ingredients in a variety of food products.  相似文献   

20.
The growth‐promoting effects of κ‐casein hydrolysates produced by four different proteases (trypsin, alcalase, papain and chymosin) on bifidobacteria (Bb12 and BBMN68) viability were evaluated. Results showed that the obtained κ‐casein hydrolysates possessed better property for improving the viability of Bb12 and BBMN68 than native κ‐casein. The bifidobacterium viability and pH drop were dependent on the added hydrolysates. The addition of κ‐casein hydrolysates improved the viability of Bb12 and BBMN68 to a variable extent. The κ‐casein hydrolysate produced with papain (KCHP) is the best for Bb12 and κ‐casein hydrolysate produced with trypsin (KCHT) is the best for BBMN68. Proper amino acid profiles improved the viability of Bb12 and BBMN68. The bifidobacterial growth‐promoting capacity of κ‐casein hydrolysate may be due to its high content of Ala, Met, Tyr, Phe and Arg residues, especially Tyr which is richer in para‐κ‐casein than in casein glycomacropeptide (GMP). In addition, the sialic acid content of κ‐casein hydrolysate produced with the tested proteases did not show a direct relationship with its bifidobacterial growth–promoting effect. The obtained peptides possessed growth‐promoting activity for Bb12 and BBMN68 existed in para‐κ‐casein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号