首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The rheological effects of propylene glycol alginate (PGA) added to solutions and model emulsions containing xanthan gum (XG) were studied using controlled stress rheometry with concentrations appropriate for salad dressings. For samples with XG and XG + PGA blends, solutions and emulsions showed a Newtonian plateau at low shear stresses. The Newtonian plateau of a solution accurately predicted (r2= 1.00) the Newtonian plateau for an emulsion of equivalent gum concentration. Addition of PGA to constant levels of XG showed a more than additive increase in the Newtonian plateau viscosity for solutions and emulsions. For XG aqueous solutions, pseudoplasticity decreased upon addition of PGA. Storage and loss moduli increased with addition of PGA to XG for solutions and emulsions, although G’ for solutions of PGA alone were negligible.  相似文献   

2.
This study examined the steady flow and dynamic rheological behaviors of hydroxypropylated sweet potato starch (HPSPS) pastes mixed with guar gum (GG), locust bean gum (LBG), and xanthan gum (XG) at different concentrations (0, 0.3, and 0.6%). The HPSPS–gum mixtures had higher shear‐thinning fluid characteristics than the control (0% gum) at 25°C. The addition of the gums resulted in an increase in the consistency index (K) and apparent viscosity (ηa,100). The dynamic moduli (G′, G″) and complex viscosity (η*) values of the HPSPS–gum mixtures were higher than those of the control, and they increased with an increase in gum concentration. In particular, the presence of XG at 0.6% in the HPSPS–gum mixture systems gave rise to the greatest viscoelastic properties among the gums examined at different concentrations. The tan δ (ratio of G″/G′) values (0.35–0.57) of the HPSPS–GG and HPSPS–XG mixtures were much lower than those of the control (0.82) and HPSPS–LBG (0.88–1.06), indicating that the elastic properties in the HPSPS–gum mixture systems were strongly affected by the additions of GG and XG. These steady flow and dynamic rheological parameters indicated there were synergistic interactions between the HPSPS and gums. The synergistic effects of the gums and modified starch were hypothesized by considering the molecular incompatibility and molecular interactions between the gums and HPSPS.  相似文献   

3.
Flaxseed gum was evaluated for its application as a stabilizer for salad dressing. It was found that for stabilization to occur the concentration of gum had to be higher than 0.45% (w/w). Solvent quality affected the stability of model oil‐in‐water emulsions. Flaxseed gum stabilized emulsions were stable at pHs greater than 2.8. Lower values caused the polysaccharide to have a compact configuration or caused cleavage of the polymer creating instability. Larger mean droplet size and creaming were observed when the pH was too low or the gum concentration was not sufficient for coverage. Salt addition greatly affected the rheological properties of the polysaccharide; however, the electrolyte improved the emulsifying capabilities of the egg yolk protein. Aging weakened the polymer network structure as shown by a decrease in Newtonian viscosity with a corresponding increase in phase angle confirming the transformation to a more fluid system.  相似文献   

4.
BACKGROUND: The objective of this study was to develop a low‐fat (LF) mayonnaise containing polysaccharide gums as functional ingredients. Xanthan gum (XG, 15 g kg?1), citrus fiber (CF, 100 g kg?1) and variable concentration of guar gum (GG) were used to formulate the optimum ratios of polysaccharide gums as fat replacers. The fat content in LF mayonnaise was reduced to 50% if compared with full‐fat (FF) mayonnaise, and the products still maintained ideal rheological properties. RESULTS: The rheological parameters showed that there were no (P > 0.05) differences in yield stress, viscosity and flow behavior index between XG + 10 g kg?1 GG, CF + 5 g kg?1 GG and FF control. LF mayonnaises had lower caloric values and higher dietary fiber content than the FF counterpart. Scanning electron microscopy (SEM) micrographs illustrated that the network of aggregated droplets in LF treatments contained a large number of interspaced voids of varying dimensions. Furthermore, in a comparison of sensory evaluation of LF treatments with commercial and our FF mayonnaises, there were no (P > 0.05) differences in any sensory scores among XG + 10 g kg?1 GG control. CONCLUSION: This study shows that XG + 10 g kg?1 GG and CF + 5 g kg?1 GG could be used in LF mayonnaise formulations based on its multiple functions on processing properties. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
The gelling process of decolourised hsian‐tsao leaf gum (dHG)/starch mixtures was monitored as a function of starch/gum ratio and starch type using a dynamic rheometer. It was found that the gelling process followed first‐order kinetics. At starch/gum ratios of 5:1, 4:2 and 3:3, dHG interacted with starch synergistically, resulting in a marked increase in storage modulus (G′). Both the gelling reaction rate constant and plateau G′ value as a function of starch/dHG ratio showed a maximum at a certain starch/gum ratio. These results indicated that a suitable starch/dHG ratio could facilitate the formation of a three‐dimensional network structure and the conversion of chains in the sol fraction into a gel. The maximum G′ value reached depended on the unique chemistry of each starch. Mixed systems with tapioca starch generally showed lower plateau G′ values than mixed systems with wheat or corn starch, possibly owing to the lower amylose content of tapioca starch. © 2002 Society of Chemical Industry  相似文献   

6.
The Effects of hsian‐tsao leaf gum (HG) on the rheological/textural properties of non‐waxy starches were studied. Pronounced interactions between starch and HG were observed. The rheological properties, including pseudo‐gel viscosity in the rapid visco‐analyser test, storage and loss moduli in the dynamic rheological test, as well as firmness in the texture analyser test, of the mixed gels generally improved with increasing gum concentration to a certain level, then deteriorated with further increase in gum concentration. The critical gum concentration for the development of optimal rheological properties depended on the starch type and concentration. Within the concentration range studied, mixed systems with wheat starch could generally reach the highest pseudo‐gel viscosity, firmness, and storage modulus if the starch/HG ratio was appropriate, followed by those with corn and tapioca starch. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
Xanthan gum is a water‐soluble extracellular polysaccharide that has gained widespread commercial use because of its strong pseudoplasticity and tolerance to high ionic strength, which bring unique rheological properties to solutions. This study compares and evaluates the emulsifying properties of oil‐in‐water (30:70 v/v) emulsions stabilized with lupin and soya protein isolates and medium molecular weight xanthan gum. The protein was obtained by an isoelectric precipitation method and the polysaccharide was produced by Xanthomonas campestris ATCC 1395 in batch culture in a laboratory fermenter (LBG medium) without pH control. The addition of xanthan gum in the emulsion formulation enhances emulsion stability through the phenomenon of thermodynamic incompatibility with the legume protein, resulting in an increase of the adsorbed protein at the interface. The emulsion stability is also enhanced by a network structure built by the polysaccharide in the bulk phase. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
The aim of this work was to investigate the effects of hydrocolloid addition on rheological properties and breadmaking performance of rice-buckwheat batter at different water levels. Xanthan gum (XG) and propylene glycol alginate (PGA) were added to rice-buckwheat blend (60:40) at levels of 0.5–1.5%. Batter rheological properties were investigated using dynamic measurements in the linear viscoelastic range (frequency sweep and time cure tests). The addition of both hydrocolloids significantly enhanced the storage modulus (G′) of batter. XG exerted greater effect on G′ than PGA. Different effects on starch gelatinisation were observed for the two hydrocolloids. PGA breads showed higher improvement in terms of increased specific volume (Vs), decreased crumb firmness and crumb structure than XG breads. Different technological behaviours were explained on the basis of batter rheological properties.  相似文献   

9.
The role of egg yolk and egg yolk + salt in stabilizing oil-in-water (o/w) salad dressing emulsions pre-stabilized with xanthan and propylene glycol alginate was studied using creep tests, steady shear, and particle size analysis. Results show that each combination significantly affects rheological stability of model o/w salad dressing emulsions. All emulsions exhibited viscoelasticity and wcrc characterized by three parameters: η1, E1 and ηN. Steady shear measurements showed that both egg yolk and salt increased viscosity radically. Particle size data showed significant changes with both addition of egg yolk and salt to the model system.  相似文献   

10.
The incorporation of relevant amounts of non-adsorbing hydrocolloids to oil-in-water (O/W) emulsions is a suitable alternative to reduce creaming. The effect of incorporating xanthan gum (XG) or guar gum (GG) in soy soluble polysaccharide (SSPS) stabilized oil-in-water (O/W) emulsions was studied. The emulsions contained 6 wt.% of SSPS, 20 wt.% Perilla seed oil (PSO), an omega-3 vegetable oil, and variable amounts of XG or GG ranging from 0.03 to 0.3 wt.%. The presence of minute amounts of XG or GG in fresh emulsions significantly decreased the emulsion droplet size (EDS) although such low concentrations did not provide enough continuous phase viscosity to arrest creaming. Emulsion microstructure indicated the presence of flocculation even at high concentrations of XG or GG caused by a depletion mechanism. All emulsions with XG or GG exhibited pseudoplastic behavior while the control emulsions showed an almost Newtonian behavior. Emulsion droplet polydispersion generally decreased with increase in the continuous phase viscosity indicating the importance of continuous phase viscosity in the dissipation of shear energy throughout the emulsion during homogenization. The characteristics of the emulsions were closely related to the rheological changes of the continuous phase.  相似文献   

11.
The role of xanthan gum and propylene glycol alginate in stabilizing model oil-in-water salad dressing emulsions has been studied using rheological measurements, particle size analysis and surface tension. Increasing xanthan gum concentration within the gum ratio gave higher viscosity due to formation of aggregates with larger sizes. Propylene glycol alginate (PGA) was surface-active leading to reduction in surface tension of air/water surfaces. Reduction in viscosity was seen in the presence of PGA.  相似文献   

12.
In this work the stability and the rheological behaviour of salad dressing containing 'Minas Frescal' whey cheese was studied. The salad dressing was stabilised by xanthan gum (XG), propylene glycol alginate (PGA) and carboxymethylcellulose (CMC). All samples were stable for a period of 4 months. The rheological model of Ostwald-de-Waelle (Power-Law) was used in order to fit the data and to obtain the rheological parameters of flow behaviour index ( n ), consistency coefficient and apparent viscosity (ηap). All formulations showed a pseudoplastic behaviour and the PGA contributed to increase the values of flow behaviour index. Consistency coefficient was similarly affected by XG and PGA fractions. Apparent viscosity was highly influenced by the hydrocolloid CMC, with higher values of apparent viscosity in the proportion of 0.25/0.25/0.5% (PGA/XG/CMC). Hydrocolloid association (ternary mixtures) was statistically significant, resulting in an increase of K and ηap parameters. The results show that salad dressing with whey as aqueous phase and stabilised by a ternary combination of XG, PGA and CMC can be a technological alternative to the food industry.  相似文献   

13.
The rheological behavior and stability of oil-in-water emulsions stabilized by different thickening agents were analyzed. Food emulsions were prepared with commercial sunflower oil (40% w/w oil-in-water) and stabilized with 1% emulsifier. The tested thickeners were: (1) 1% w/w xanthan gum (XG), (2) 5% w/w potato starch (PS), (3) 5% PS + 0.5% XG, (4) 1% w/w guar gum (GG), and (5) 0.5% XG + 0.5% GG. Mean droplet size and droplet size distribution (DSD) of emulsions were determined by static light scattering. Steady flow (viscosity versus shear rate), transient flow (viscosity versus time) and oscillatory shear tests (linear viscoelasticity) were performed. The addition of thickening agents improved the stability of the emulsions, the effect was less marked in systems containing only GG. DSD was not significantly modified in emulsions containing starch or hydrocolloids. Microscopic observations showed that all the tested emulsions were flocculated due to the presence of hydrocolloids. The observed shear thinning behavior was attributed to the molecular structure of the polysaccharides and to the flocculation/deflocculation process; viscosity data were satisfactorily fitted to the Cross model. Frequency sweeps showed that emulsions with PS or XG have a weak gel structural network (G' > G); those with GG correspond to a polymeric solution where G' and G" curves intersect within the range of tested frequencies. The viscoelastic linear behavior was described according to the Maxwell generalized model. The discrete relaxation spectrum and relaxation times were estimated from the experimental values of G' and G" for emulsions with PS, PS + XG, and XG. Nonlinear viscoelasticity was also studied from stress relaxation curves at different shear strains. The damping function was calculated and the Soskey-Winter parameters were determined. Transient flow viscosities at different shear rates were comparable to the values estimated from stress relaxation measurements.  相似文献   

14.
Rheological properties of solutions containing different ratios and concentrations of three hydrocolloids, i.e., basil seed gum (BSG), guar gum and carboxymethyl cellulose (CMC) were investigated. In addition, the effect of sucrose, skim milk powder and emulsifier, as key ice cream constituents, on the rheological properties of selected hydrocolloids was studied. Power law model was used to describe the rheological properties. Results showed that flow behaviour index of selected hydrocolloids, without any additives, was in the range of 0.501–0.789, while consistency coefficient and apparent viscosity of samples varied from 0.052 to 0.750 Pa.sn, and 0.014 to 0.110 Pa.s, respectively. Addition of sucrose and emulsifier to hydrocolloids led to more viscous and more pseudoplastic solutions, whereas skim milk decreased viscosity and pseudoplasticity in some cases. BSG as a new source of hydrocolloid revealed promising results. Synergistic interactions between gums improved the viscosity of solutions, especially in the case of CMC and guar.  相似文献   

15.
We report the optimization of oleogel formulation based on sodium caseinate (CN, 0–4 g/100 g), xanthan gum (XG, 0–1 g/100 g), guar gum (GG, 0–1 g/100 g), and drying method (freeze and oven drier) using response surface methodology to achieve the desired oil binding capacity, textural, and rheological attributes. All the selected responses were successfully fitted by a quadratic model with determination coefficient values higher than .95 with the exception of firmness values which was fitted by linear model. There were considerable increases in all the responses for the samples containing ternary mixtures of protein-gum (CN:XG:GG) as well as binary mixtures (CN:GG and CN:XG) compared to samples containing protein or gums alone due to the synergistic effect of CN and gums on formation of highly ordered and strong gel network. Regression modeling demonstrated that freeze drying method led to significantly greater structure recovery values than those of oven drying method. The best formulation was the freeze dried oleogel containing 4 g/100 g CN, 0.43 g/100 g XG, and 0.98 g/100 g GG. Results showed that fabrication of oleogels with at least 94.5 g/100 g sunflower oil and characteristics similar to industrial shortening is feasible.  相似文献   

16.
Rheology of spray-dried egg yolk-stabilized emulsions   总被引:1,自引:0,他引:1  
This paper deals with the influences that concentrations of oil fraction (65–77.5% w/w) and egg yolk (1–5% w/w), as well as temperature (5–35 °C), exerted on the droplet size distribution and rheological functions of concentrated oil-in-water food emulsions that were stabilized by a spray-dried egg yolk product. This work must be considered as a preliminary study concerning the use of low-in-cholesterol egg yolk as emulsifier. In order to achieve this aim, steady-state flow and dynamic viscoelasticity tests were done with emulsions processed with a rotor-stator turbine. The same processing conditions were always maintained. All of the emulsions prepared showed a high stability. An increase in oil fraction yielded higher values for the rheological functions, and larger droplet diameters. The influence of processed egg yolk concentration was more complex. Thus, an increase in egg yolk content yielded lower values for the rheological functions, but, after a particular concentration, a further increase in emulsifier content yielded higher values for the rheological functions. The experimental results have been discussed taking into account the close relationship between rheology and emulsion structural parameters.  相似文献   

17.
The effects that salt content and composition of emulsifier blends exert on the rheological properties of salad dressing-type emulsions were studied. Binary blends of egg yolk and different types of amphiphilic molecules (Tween 20, sucrose laurate and pea protein), in several proportions, were used to stabilize emulsions. Salt concentration was ranged from 0 to 2.3% w/w. Steady-state flow tests and small-amplitude oscillatory shear measurements within the linear viscoelastic region were carried out. Rheological tests were complemented with droplet size distribution measurements. Rheological properties and physical stability of the emulsions studied were significantly influenced by salt content and the nature of binary emulsifier blends. In general, the values of rheological parameters studied increased with salt content. However, salt affects in much higher extent the properties of emulsions stabilized by high proportions of egg yolk or pea protein in the emulsifier blend, rather than those mainly stabilized by non-ionic low-molecular-weight surfactants, which are less sensitive to changes in the ionic strength. In this sense, the increase observed in the values of viscosity and linear viscoelastic functions of emulsions is more important when a protein is predominant in the emulsifier blend. This effect was explained on the basis of a more apparent increasing interdroplet interactions and viscosity of the continuous medium, both of them induced by salt addition, which lead to the consecution of an extensively flocculated state and improved creaming stability. On the contrary, different blends of pea protein and egg yolk showed a quite similar evolution of the rheological parameters with salt concentration.  相似文献   

18.
本实验采用乳液模板法制备了不同羟丙基甲基纤维素(HPMC)和黄原胶(XG)浓度的初榨椰子油凝胶,对所得乳状液和油凝胶进行了粒径分析、微观结构观察、流变测定、油损失和X-射线衍射(XRD)分析,探讨HPMC和XG浓度对初榨椰子油凝胶形成和物理性能的影响.微观结构和粒径分析结果表明:高浓度HPMC具有较好的乳化性能,获得油...  相似文献   

19.
In the present study, the optimized mixture proportions of low cholesterol-low fat mayonnaise contained soy milk as an egg yolk substitute (10%) with different composition of xanthan gum (XG), guar gum (GG) and mono- & diglycerides emulsifier (MDG) (0–0.36% of each component) were determined by applying the simplex-centroid mixture design method to achieve the desired stability, textural and rheological properties and sensory characteristics for effective formulation process. Results revealed that the best mixture was the formulation contained 6.7% mono- & diglycerides, 36.7% guar gum and 56.7% xanthan gum. The xanthan gum was the component showing the highest effect on all the properties of mayonnaise samples. In addition, an increase of xanthan gum followed by guar gum caused greater values for the stability, heat stability, consistency coefficient, viscosity, firmness, adhesiveness, adhesive force and overall acceptance and lower value for flow behavior index. Depending on the desirable level of xanthan gum, guar gum and mono- & diglycerides, creation of low cholesterol-low fat mayonnaise with properties closely matching those of commercial ones is possible.  相似文献   

20.
Phenylketonuria (PKU) is an inherited metabolic disease resulting from an enzyme defect that leads to failure to utilize phenylalanine and it is the most common aminoacidopathy in Turkey. There are a considerable number of individuals suffering from PKU and they need special food formulations, but the choice of special foods is limited for these people. Since the bread is the staple food in Turkey, the primary aim of this study was to develop bread formulation and procedure for PKU patients by using materials available in Turkey. To be able to produce low phenylalanine starch‐gum bread, five different commercial food grade gums were added to the corn starch at 1, 2, and 3% addition levels. The addition of surfactant brought about remarkable changes in the starch dough. Loaf of the best overall quality was produced with one of the gums (xanthan gum and carrageenans mixture) at the addition level of 2%, water addition level of 105%, the final proof time of 110 min and the temperature of 30°C when compared with the other gum breads. As a result, a basic formula and procedure for preparing a desirable corn starch‐gum bread was reported for PKU patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号