首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aluminium-fly ash mixtures containing different weight percentages of fly ash were prepared and compacted at pressures from 138–414 MPa. The compacts prepared at 414 MPa were sintered in nitrogen atmosphere at 600, 625 and 645°C, respectively. The time of sintering ranged from 0.5–6 h. The densification parameter and the green densities of the compacts were determined as a function of compacting pressure and fly ash weight per cent. Density, hardness and strength of the sintered compacts were determined as a function of weight per cent of fly ash particles. Volume changes during sintering of green compacts were also evaluated as a function of increasing fly ash weight per cent. Microscopic studies of green and sintered compacts were done to study the effectiveness of sintering. Green and sintered density of the compacts were found to decrease with increasing weight per cents of fly ash. Sintering results in slight decrease in density and increase in volume of green compacts within the range investigated. Strength of the sintered compacts decreased with increasing weight per cent of fly ash under the present experimental conditions; however, the hardness was found to increase slightly up to 10 wt% fly ash, beyond which it decreased. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
The density and elastic moduli of green compacts can be determined by ultrasonic method with the help of pre-prepared diagrams. In this way, pressing conditions can be taken under control easily. In this study, fly ash particles were used as fillers in an aluminum alloy matrix material. The weight fractions of fly ash in the composites were in the range of 5–30%. The resulting composites were compacted at pressures ranging from 63 MPa to 316 MPa. It was observed that the green density increased with increasing compacting pressure and decreased with increasing weight percent of fly ash particles resulting in lightweight composites. The green compact composites were also tested using an ultrasonic non-destructive evaluation method. Results showed that ultrasonic velocities are a strong function of the density and the fly ash fraction in this material and could be potentially used to predict the density and the fly ash fraction as well as the elastic moduli of the metal matrix composite.  相似文献   

3.
In this study influence of compaction pressure, sintering temperature, and sintering time on mechanical and wear behavior of the fly ash reinforced copper-based composites are analyzed. The composites were prepared by powder metallurgy (P/M) technique with copper as matrix, 5 and 10 wt% of fly ash as reinforcement. The green compacts were prepared at three different pressures such as 350, 400, and 450 MPa. The prepared green composites were sintered at 700, 800, and 900 °C for the time period of 30, 60, and 90 min, respectively. From the results it is observed that when the process parameter increases the density, hardness, compression strength, and wear resistance increases.  相似文献   

4.
The addition of hollow fillers having appropriate mechanical properties can decrease the density of the resulting composite, called syntactic foams, while concurrently improving its mechanical properties. In this study, hollow fly ash particles, called cenospheres, are used as fillers in polyester matrix material. Cenospheres are a waste by-product of coal combustion and, as such, are available at very low cost. In this study, the composites were synthesized by settling cenospheres in a glass tube filled with liquid polyester resin and subsequently curing the resin. This process resulted in a functionally graded structure containing a gradient in the cenosphere volume fraction along the sample height. Uniform radial sections were cut from each composite and were characterized to observe the relationship between cenosphere volume fraction and compressive properties of the composite. The composite was also tested using ultrasonic non-destructive evaluation method. Results show that the modulus of the composites increases with increasing cenosphere volume fraction. The modulus of composites containing more than 4.9 vol% cenosphere was found to be higher than the matrix resin. In general, the modulus of composites increased from 1.33 to 2.1 GPa for composites containing from 4.9–29.5 vol% cenospheres. The specific strength of the composite was found to be as high as 2.03 MPa/(kg/m3) compared to 0.96 MPa/(kg/m3) for the neat resin. Numerous defects present in fly ash particles caused a reduction in the strength of the composite. However, the reduction in the strength was found to be only up to 22%. Increase of over 110% in the specific modulus and only a slight decrease in the strength indicates the possibility of significant saving of weight in the structures using polyester/fly ash syntactic foams.  相似文献   

5.
The feasibility of incorporating fly ash cenospheres in die cast magnesium alloy has been demonstrated. The effects of fly ash cenosphere additions on the microstructure and some of the salient physical and mechanical properties of magnesium alloy (AZ91D) metal matrix composites were investigated. The control AZ91D alloy and associated composites, containing 5, 10, and 15 wt.% of fly ash cenospheres (added), were synthesized using a die casting technique. A microstructural comparison showed that microstructural refinement – occurred due to the fly ash additions and became more pronounced with an increase in the percentage of the fly ash added. The metal matrix areas nearer to the fly ash particles exhibited a greater degree of refinement than was observed in the areas further away from these particles. Both filled and unfilled fly ash cenospheres, and porosity were observed in the composite microstructures. The composite specimen densities decreased and the coefficient of thermal expansion did not change significantly as the volume percent of fly ash was increased within the range investigated. The hardness values of the composite specimens exhibited an increase in proportion to the increase in percentage of added fly ash. The tensile strength of the composites also increased as the concentration of fly ash cenospheres was increased. In contrast, the Young’s modulus of these composite samples, as measured by non-destructive pulse-echo method, decreased as the percentage of fly ash in the composite was increased. SEM micrographs of the tensile fracture surfaces showed broken cenospheres on the fracture surface and evidence of ‘pull outs’, where fly ash particles were previously embedded in the matrix. Compression testing results showed that the presence of 5 wt.% cenospheres decreased the compressive strength and compressive yield strength of the composite relative to that of the AZ91D matrix alloy. Surprisingly, a significant change in compression strength was not observed for the composites with 10 and 15 wt.% cenospheres in comparison to the AZ91D matrix alloy. In contrast to the tensile tests, no cenosphere remnants were observed on the compressive test fracture surface of the composites. This observation suggests that the fracture of the composite was initiated within the AZ91D matrix by normal void nucleation and growth, followed by crack propagation through the matrix, avoiding any of the cenospheres, leading to composite fracture of the matrix.  相似文献   

6.
A356 Al–fly ash particle composites were fabricated using stir-cast technique and hot extrusion. Composites containing 6 and 12 vol.% fly ash particles were processed. Narrow size range (53–106 μm) and wide size range (0.5–400 μm) fly ash particles were used. Hardness, tensile strength, compressive strength and damping characteristics of the unreinforced alloy and composites have been measured. Bulk hardness, matrix microhardness, 0.2% proof stress of A356 Al–fly ash composites are higher compared to that of the unreinforced alloy. Additions of fly ash lead to increase in hardness, elastic modulus and 0.2% proof stress. Composites reinforced with narrow size range fly ash particle exhibit superior mechanical properties compared to composites with wide size range particles. A356 Al–fly ash MMCs were found to exhibit improved damping capacity when compared to unreinforced alloy at ambient temperature.  相似文献   

7.
采用液态搅拌法制备漂珠增强铝基复合材料过程中, 当颗粒含量较低时, 熔体容易分层。为了了解颗粒在铝熔体中的分布情况, 对试样的不同位置进行扫描电镜分析。结果表明, 在试样的底部有明显的纯铝层,而漂珠在上部的铝熔体中分布均匀。漂珠向熔体上部移动的速度主要取决于漂珠颗粒与铝熔体的密度差、颗粒直径、颗粒体积分数及铝熔体粘度。原料确定后, 只能通过增加铝熔体的粘度或减少浇铸过程的时间来减少纯铝层的产生。因此, 可以采用下浇铸式方法和快速冷却装置, 使颗粒来不及向上运动而被凝固在铝熔体中, 形成漂珠在铝熔体中均匀分布的复合材料。   相似文献   

8.
Equal channel angular extrusion (ECAE), with simultaneous application of back pressure, has been applied to the consolidation of 10 mm diameter billets of pre-alloyed, hydride–dehydride Ti–6Al–4V powder at temperatures ≤400 °C. The upper limit to processing temperature was chosen to minimise the potential for contamination with gaseous constituents potentially harmful to properties of consolidated product. It has been demonstrated that the application of ECAE with imposed hydrostatic pressure permits consolidation to in excess of 96% relative density at temperatures in the range 100–400 °C, and in excess of 98% at 400 °C with applied back pressure ≥175 MPa. ECAE compaction at 20 °C (back pressure = 262 MPa) produced billet with 95.6% relative density, but minimal green strength. At an extrusion temperature of 400 °C, the relative density increased to 98.3%, for similar processing conditions, and the green strength increased to a maximum 750 MPa. The relative density of compacts produced at 400 °C increased from 96.8 to 98.6% with increase in applied back pressure from 20 to 480 MPa, while Vickers hardness increased from 360 to 412 HV. The key to the effective low-temperature compaction achieved is the severe shear deformation experienced during ECAE, combined with the superimposed hydrostatic pressure.  相似文献   

9.
In this paper, the epoxy resin composite filled with wood fiber and fly ash cenosphere was prepared. In order to improve the bonding properties between wooden fiber/fly ash cenosphere and epoxy resin, the grafting treatment of wooden fiber and fly ash cenosphere surfaces was carried out here using KH550 type silane coupling agent. The effects of different process parameters on the surface modification effect of wooden fiber and fly ash cenosphere were investigated, the mechanical properties and energy absorption characteristics of the materials before and after the filler modification were tested, and the microscopic interfacial structures of the matrix with wooden fiber and fly ash cenosphere were investigated by scanning electron microscopy. Meanwhile, based on LS-DYNA simulation software, the energy-absorbing performance of energy-absorbing boxes prepared from AA6061 aluminum alloy and modified wooden fiber-fly ash cenosphere/epoxy resin composites were compared in low-velocity collisions.  相似文献   

10.
Significantly light weight magnesium composite foams are synthesised by addition of fly ash cenosphere particles (waste from coal-fired power plants) in biocompatible pure magnesium using solidification-based disintegrated melt deposition technique. The density of the composite foams synthesised in this study approaches that of plastics- and polymer-based composites. Microstructure development of Mg/cenosphere composite foams was favourable as they exhibited better dimensional stability (reduced coefficient of thermal expansion) and remarkable improvements in tensile strengths, compressive strengths, compressive total strain and microhardness. The present study highlights the processing, microstructure and mechanical properties of Mg/cenosphere composite foams which hold great potential as light weight metal-based green materials for diverse weight critical applications spanning from engineering to biomedical sector.  相似文献   

11.
Continuing study in metallurgical field calls for growing reinforcements of which fly ash plays an important role. In this study, Al alloys were reinforced with different solid fly ash particles. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence (XRF) analyses were used to identify the fly ash particles, and they were also applied to the composite alloys. The X-ray diffraction (XRD) results indicated that the crystalline phase of the fly ash was an effective reinforced phase. Meanwhile, the SEM and optical micrographs of the composite samples indicated that fly ash could be reacted or settled in the matrix of the aluminium. The physical, tribological and microhardness analyses were also used to study the Al–fly ash composites. The best wear resistance corresponding to the lowest loss was obtained in the samples with as-received fly ash which were mostly in accordance with the results in the samples containing treated fly ash. Meanwhile, the proportion of the wear results to the hardness of the samples was observed. Finally, the light weight Al alloys was realized, and increasing the strength is a likeness.  相似文献   

12.
李强  魏磊山  孙旭东 《材料导报》2017,31(18):39-42, 71
以氧化石墨烯和纳米羟基磷灰石(HA)粉体为原料,采用凝胶注模成型技术制备了氧化石墨烯/HA复合材料。研究了有机单体、浆料固相含量和石墨烯含量对氧化石墨烯/HA浆料粘度的影响,观察了陶瓷浆料的凝胶固化过程并测量了固化后生坯的密度和抗压强度,分析了氧化石墨烯含量对烧结后复合材料抗弯强度和断裂韧性的影响,观察了试样断口的显微组织。研究结果表明,有机单体含量为15%(质量分数,下同),固相含量为45%,氧化石墨烯含量为1.5%时,氧化石墨烯/HA浆料的粘度最佳,为362.9mPa·s,浆料的分散性良好,固化后生坯具有较高的密度和抗压强度。随氧化石墨烯含量的增加,复合材料的抗弯强度和断裂韧度均先增加后降低。当氧化石墨烯含量为1.5%时,1 150℃烧结样品的抗弯强度为81.5MPa,断裂韧性为1.52MPa·m1/2,分别比HA基体提高了151.8%和74.7%,因此添加氧化石墨烯后的HA复合材料的力学性能更佳。  相似文献   

13.
富铁空心微珠电磁特性研究   总被引:1,自引:0,他引:1  
贾治勇  王群  周美玲 《功能材料》2006,37(6):877-879
对富铁空心微珠的电磁特性进行了研究.富铁空心微珠的粒径、磁选分级性能与材料的电磁参数密切相关,铁氧化物的富集使富铁空心微珠与空心玻璃微珠的电磁参数不同,进而使其具有吸波性能.实验结果表明,60%(体积分数)的富铁空心微珠的吸波性能,在2~18GHz测试频率范围内>5dB的有效频带宽度达到6.6GHz.  相似文献   

14.
《Composites Part A》2007,38(1):186-191
The cenosphere and precipitator fly ash particulates were used to produce two kinds of aluminum matrix composites with the density of 1.4–1.6 g cm−3 and 2.2–2.4 g cm−3 separately. The electromagnetic interference shielding effectiveness (EMSE) properties of the composites were measured in the frequency range of 30.0 kHz–1.5 GHz. The results indicated the EMSE properties of the two types of composites were nearly the same. By using the fly ash particles, the shielding effectiveness properties of the matrix aluminum have been improved in the frequency ranges 30.0 kHz–600.0 MHz and the increment varied with increasing frequency. The EMSE properties of 2024Al are in the range −36.1 ± 0.2 to −46.3 ± 0.3 dB while the composites are in the range −40.0 ± 0.8 to −102.5 ± 0.1 dB in the frequency range 1.0–600.0 MHz. At higher frequency, the EMSE properties of the composites are similar to that of the matrix. The tensile strength of the matrix aluminum has been decreased by addition of the fly ash particulate and the tensile strength of the composites were 110.2 MPa and 180.6 MPa separately. The fractography showed that one composite fractured brittly and the other fractured in a microductile manner.  相似文献   

15.
空心微珠表面化学镀Ni-Co-P合金镀层研究   总被引:5,自引:0,他引:5  
用化学镀的方法将空心微珠改性,使它具有电、磁等性能,是拓宽空心微珠应用领域的一种新方法.以AgNO3代替常见的贵金属盐PdCl2为活化剂,在空心微珠表面化学镀Ni-Co-P合金镀层,用X射线衍射仪、能谱仪和扫描电镜对其进行了分析表征.结果表明,以AgNO3活化剂代替常用的PdCl2活化剂,可在空心微珠表面得到Ni-Co-P合金镀层,同时分析了以AgNO3代替常用的PdCl2活化剂制备Ni-Co-P合金镀层的形成机理.本方法能改善Ni-Co-P合金镀层的性能,成本低,具有良好的应用前景.  相似文献   

16.
The aim of present work was to study the effect of adding garnet and fly ash on the physical and mechanical performance of Al7075 hybrid composites. Al7075 hybrid composites reinforced with varying weight percentage (0 wt.%–15 wt.%) of each of garnet and fly ash were fabricated and characterized for the comparative assessment of their physical and mechanical properties. The physical and mechanical tests such as void content test, hardness test, tensile strength test, impact strength tests, flexural and fracture toughness test were performed for both garnet and fly ash reinforced composites. The finding of results indicated that the addition of 0 wt.%–15 wt.% of garnet increased the void content, hardness, flexural strength, tensile strength, impact strength and fracture toughness in the range of 1.01 %–2.69 %, 33 HRB–88 HRB, 165 MPa–275 MPa, 205 MPa–263 MPa, 12 J–22 J and 0.11 MPa ? m1/2–0.58 MPa ? m1/2 at crack length 0.1 respectively whereas addition of 0 wt.%–15 wt.% of fly ash increased the void content, hardness test, flexural strength, tensile strength, impact strength and fracture toughness in the range of 1.010 %–1.351 %, 33 HRB‐80 HRB, 165 MPa–225 MPa, 205 MPa–236 MPa, 12 J–20 J, 0.11 MPa ? m1/2–0.48 MPa ? m1/2 at crack length 0.1 respectively. Apart from the economic concern and void issue, Garnet indicated better choice of reinforcement as compared to fly ash in terms of mechanical properties.  相似文献   

17.
Hydrothermal hot-pressing (HHP) technique was used to solidify calcium silicate hydrate powders at a relatively low temperature as 200°C and low pressure (20 MPa) with short reaction time (30 min). Diatomaceous earth, α-quartz, fly ash and silicic acid were used as the Si sources. Waste rice husk was used for fiber reinforcement to strength the hydrothermal hot pressed calcium silicate compacts. The tensile strength of the solidified bodies with and without rice husk was tested. The solidified bodies with reinforced by 5% rice husk exhibit high tensile strength (∼9 MPa), which is almost three times lager than their non-additives compacts. There is no effect of additives for the density of solidified bodies, which remains almost constant at ∼2gcm–3 similar to their non-additive compacts. The developed low temperature solidification method is expected to be useful in the development of an environmentally friendly processing route for making artificial wood. Received: 19 December 1999 / Reviewed and accepted: 28 February 2000  相似文献   

18.
Fly ash particles emitted from municipal solid waste-incinerators are of environmental concern. This study aims to investigate the applicability of sedimentation/steric field-flow fractionation (Sd/StFFF) and to develop a Sd/StFFF method for the separation and size characterization of incinerator fly ash. This study focuses on the fly ash particles larger than approxiamtely 1 microm, which comprise more than 90% (w/w) of the fly ash. Fly ash is a complex mixture of particles having various chemical compositions, sizes, shapes, and densities. Prior to Sd/StFFF analysis, fly ash particles are prefractionated into six density classes using a modified centrifugal procedure. It was found that fly ash particles are most abundant in the density range between 2.4 and 2.8 g/cm3. Different density fractions seem to contain particles of different chemical compositions. The Sd/StFFF conditions for the size-characterization of fly ash are sample concentration, approximately 0.3% (w/v); dispersing medium, 50% ethanol in water; and carrier liquid, water with 1.0% FL-70 (ionic strength approximately 0.012 M). Sd/StFFF data show no significant differences in size distribution among different density fractions. Generally, the sizes obtained from Sd/StFFF are larger than those obtained from a Coulter Multisizer and microscopy, probably because of the irregular shapes of the fly ash particles.  相似文献   

19.
粉煤灰微珠-TiO_2复合颗粒制备与性能表征   总被引:1,自引:0,他引:1  
以粉煤灰微珠为基体,利用TiOSO_4水解法,制备TiO_2包覆微珠复合颗拉。通过扫描电镜、X射线衍射、比表面积、超声振荡和光电子能谱等检测手段,对复合微珠的表面形貌、包覆层相组成、比表面积、包覆层与基体结合强度与结合方式进行了研究和探讨。检测与分析表明:得到的复合微珠表面包覆层为均匀非连续包覆,包覆层主要为金红石相,包覆后微珠比表面积比未包覆前提高了超过600倍,且包覆层颗粒与基体结合强度较高,二者间存在化学键的联结。  相似文献   

20.
Vitrification of fly ash from municipal solid waste incinerator   总被引:34,自引:0,他引:34  
Fly ash from municipal solid wastes (MSW) incinerators in Korea contains a large amount of toxic materials and requires pertinent treatments. However, since fly ash in Korea has a high chlorine concentration, it is difficult to apply cementation and chemical treatment techniques. In this study, we report the vitrification of fly ash along with the properties of the glasses and leaching characteristics of heavy metal ions.Fly ash can be vitrified by melting at 1500 degrees C for 30 min with the addition of >5 wt.% of SiO2. Glasses showed Vickers hardness of 4000-5000 MPa, bending strength of 60-90 MPa and indentation fracture toughness of approximately 0.9 MPa m(1/2). Glasses also showed the excellent resistance against leaching of heavy metal ions with Cd2+ <0.04 ppm, Cr3+ <0.02 ppm, Cu2+ <0.04 ppm and Pb2+ <0.2 ppm. These results indicate that the vitrification technique is effective for the stabilization and recycling of toxic incinerator fly ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号